11.12.07

Baricentro de 3 pontos - nota interessante!

Sejam os pontos A, B e C e os comprimentos a=|BC|, b=|AC| e c=|AB|. Determine o baricentro (G, a+b+c) dos três pares (A,a), (B,b) e (C,c), em que a, b e c são tomados como massas associadas aos pontos A, B e C, respectivamente.



E verifique que este ponto G coincide com o incentro de [ABC]

10.12.07

Baricentro de placas homogéneas.

Considerada uma placa triangular homogénea, a sua massa é proporcional à sua área. Nestas condições, podemos substituir uma placa pelo ponto de encontro das medianas com massa igual à sua área - baricentro.

Uma placa quadrangular homogénea pode ser dividida, por uma das suas diagonais, em duas placas triangulares homogéneas. Podemos determinar o seu baricentro - (G, aq) - a partir dos baricentros (G1, at1) e (G2, att2). Como a diagonal é base comum dos dois triângulos, podemos tomar como massas dos seus baricentros as alturas dos triângulos relativas a essa base, proporcionais às respectivas áreas.