Já várias vezes, aqui tratámos de figuras equivalentes e de divisão de figuras em figuras equivalentes. Particularmente abordada foi a divisão em 2 triângulos equivalentes operada num triângulo qualquer por uma das suas medianas.
Como mostra a construção que se segue (em que pode movimentar os vértices A, B ou C do triângulo) pode confirmar o que sempre soube.
De quantas maneiras pode dividir um triângulo em dois triângulos equivalentes? E em três?
Durante algum tempo, vamos tratar da divisão de um triângulo em triângulos equivalentes. Quer começar a pensar na divisão em três?
17.10.07
11.10.07
Cortar um cubo
Não temos tido grandes resultados nas tentativas para as representações no plano de objectos tridimensionais. Quer nos desenhos que nos são devolvidos pelos estudantes, e mesmo na publicação de exercícios que recorrem a polígonos. Acontecem-nos mensagens de erro mesmo em exercícios simples como o que apresentamos a seguir. Começamos por tentar trabalhar com uma construção como a que se segue.
E recebemos de volta sucessivas mensagens de erro.
Com cubos nas mãos, os estudantes do 10º ano procuram determinar em que condições um plano determina secções triangulares, quadrangulares, etc. As peças desenhadas durante esse trabalho mostram-nos as dificuldades em obter desenhos esclarecedores e por isso não é de estranhar que apareça a máquina fotográfica digital para registar uma ou outra vitória.
Agora, tomemos um cubo representado, como mostra a nossa figura, que possibilita acompanhar os raciocínios construtivos na base dos axiomas e teoremas simples da geometria euclideana. Propomos a determinação da secção obtida quando o cubo é cortado pelo plano M, N e P. E recomendamos a cada estudante que mencione cada passo da resolução, justificando-o.
O exercício acabou numa representação como a que se segue e que ainda não está livre de mensagem de erro num ou outro computador.
E recebemos de volta sucessivas mensagens de erro.
Com cubos nas mãos, os estudantes do 10º ano procuram determinar em que condições um plano determina secções triangulares, quadrangulares, etc. As peças desenhadas durante esse trabalho mostram-nos as dificuldades em obter desenhos esclarecedores e por isso não é de estranhar que apareça a máquina fotográfica digital para registar uma ou outra vitória.
Agora, tomemos um cubo representado, como mostra a nossa figura, que possibilita acompanhar os raciocínios construtivos na base dos axiomas e teoremas simples da geometria euclideana. Propomos a determinação da secção obtida quando o cubo é cortado pelo plano M, N e P. E recomendamos a cada estudante que mencione cada passo da resolução, justificando-o.
O exercício acabou numa representação como a que se segue e que ainda não está livre de mensagem de erro num ou outro computador.
Subscrever:
Mensagens (Atom)