11.10.07

Cortar um cubo

Não temos tido grandes resultados nas tentativas para as representações no plano de objectos tridimensionais. Quer nos desenhos que nos são devolvidos pelos estudantes, e mesmo na publicação de exercícios que recorrem a polígonos. Acontecem-nos mensagens de erro mesmo em exercícios simples como o que apresentamos a seguir. Começamos por tentar trabalhar com uma construção como a que se segue.

E recebemos de volta sucessivas mensagens de erro.

Com cubos nas mãos, os estudantes do 10º ano procuram determinar em que condições um plano determina secções triangulares, quadrangulares, etc. As peças desenhadas durante esse trabalho mostram-nos as dificuldades em obter desenhos esclarecedores e por isso não é de estranhar que apareça a máquina fotográfica digital para registar uma ou outra vitória.
Agora, tomemos um cubo representado, como mostra a nossa figura, que possibilita acompanhar os raciocínios construtivos na base dos axiomas e teoremas simples da geometria euclideana. Propomos a determinação da secção obtida quando o cubo é cortado pelo plano M, N e P. E recomendamos a cada estudante que mencione cada passo da resolução, justificando-o.

O exercício acabou numa representação como a que se segue e que ainda não está livre de mensagem de erro num ou outro computador.

5.10.07

Inacessibilidades 3

Em busca do circuncentro.



De um triângulo [ABC] com um vértice inacessível, onde está o centro da circunferência que passa pelos três vértices A, B e C?



E se dois vértices inacessíveis, como determinar o circuncentro? Aurélio Fernandes afirma ser possível. Tente no quadro seguinte onde os vértice inacessíveis são mesmo inacessíveis (não são?).