24.8.05

Voar no trapézio

Continuámos a falar de trapézios. Seguindo um conselho de Puig Adam, Aurélio tinha proposto que construíssemos um trapézio [ABCD] de que eram dadas as bases: - |AB|=a, |CD|=b| - e as diagonais: - |AC|=e, |BD|=f. Consideremos o trapézio desenhado, para que possamos ver o que é importante: [ABO] e [CDO] são triângulos semelhantes. O problema construtivo está em encontrar o centro O da homotetia que transforma [AOB] em [COD]. Terá de ser |AB|/|CD|=|AO|/|CO|=|BO|/|OD|. A construção feita (com recursos ao Teorema de Thales) a partir da recta AB em que |AB|= a, |BT|=b, |AP|=e, |AR|=f, permite-nos calcular |AO|=|AQ| e |BO|=|AS|. E está tudo resolvido, já que podemos desenhar o triângulo [ABO].

Não caí porque estava a trabalhar no trapézio com um parceiro de confiança. E não caímos sem deixarmos o trapézio bem construído. Na nossa construção interactiva sempre pode alterar os tamanhos das bases e das diagonais.



Para aceder à nossa construção interactiva
basta clicar sobre a ilustração.




Depois da construção, demos atenção a várias propriedades interessantes do trapézio. Por exemplo a recta que passa pelos pontos médios das bases também passa pela intersecção das diagonais e dos lados... Provável é que haja outras formas (e mais elegantes) de realizar esta construção. Há?

18.8.05

No Trapézio, sempre!

Aurélio Fernandes, numa das suas traquinices e no seguimento da minha tolice interpretativa do problema do quadrilátero completo, depois de prever um voo rasante (ele disse golpe de asa) que demonstrasse o velho problema, mandou que me distraísse a construir um trapézio de que se conhecessem as bases e as diagonais. Assim fiz.
E aqui deixo, como exercício interactivo, a construção de um trapézio de que se conhecem as bases e uma diagonal.
Exactamente, construí um exercício em que se obtém um trapézio [ABCD], sendo dados |AB|, |CD|=|BC|, AB//CD e |AC|.



Para aceder ao exercício interactivo,
basta clicar sobre a ilustração.