20.1.05

Elipse como envolvente

Um ponto livre T que descreve uma circunferência está ligado a um ponto P interior a esta. A recta perpendicular a PT, em T, é constantemente tangente a uma elipse. Porquê?



19.1.05

Elipse

X desloca-se livremente em [AB]. O ponto P que desenha a elipse de focos, F1 e F2, é tal PF1=AX e PF2=XB. O eixo maior da elipse tem comprimento igual a |AB|.



[A.A.F.]


Tomemos um sistema de eixos coordenados (ortonormado) passando pelo centro da elipse, chamando 2c à distância entre os focos e 2a à distãncia entre os extremos do eixo maior. Relativamente a esse sistema de eixos, os pontos P(x,y) da elipse respeitam a seguinte condição |PF1|+|PF2|=2a.




Redescoberta de um método antigo



Em Portugal saíram alguns livros importantes para o ensino da Geometria. O mais importante para os professores é Geometria - Temas Actuais(*) da autoria de Eduardo Veloso. A respeito das cónicas e da importância da tecnologia no ensino da geometria, recomendamos a leitura das páginas 109 e seguintes. Aqui introduzimos uma animação sobre uma construção da elipse (p. 114) na base de duas circunferências concêntricas. Tem interesse por ser um exemplo de método (re)descoberto graças ao Geometer's SketchPad. Veloso encontrou o mesmo método em obra de Carnoy, publicado em 1912.

[A.A.F.]



(*) Eduardo Veloso; Geometria - Temas actuais (Materiais para professores), IIE. Lisboa:1998