31.7.13
29.7.13
Notas: noção e notação de inversão e determinação do inverso com recurso ao teorema de Thales
Temos vindo a utilizar a inversão em várias ocasiões. Muitas vezes para resolver problemas em que a passagem de circunferências para retas ou viceversa ajuda a encontrar as soluções.De passagem, já nos referimos várias vezes à definição e a propriedades da inversão e a métodos geométricos de encontrar o inverso de ponto, reta ou círcunferência, caso a caso, e, em várias ilustrações, já recorremos ao modo de transformação (ou macros) do Cinderella ou do Geogebra. Não nos preocupámos com o domínio da inversão como transformação, embora tenhamos tido alguns cuidados e referido restrições, em especial, para as construções só com compasso (ou só com circunferências).
Voltemos à definição.
Se $P$ não é o centro $O$ de uma dada circunferência de raio $r$, o inverso de $P$ em, ou relativamente a essa circunferência, é um ponto $P'$ da reta $OP$ tal que $$\overline{OP}\times \overline{OP'}=r^2\; .$$ À circunferência de centro $O$ e raio $r$ chama-se circunferência de inversão, ao ponto $O$ chama-se centro de inversão, a $r$ chama-se raio de inversão e a $r^2$ chama-se potência de inversão. Para a inversão de centro $O$ e potência $k>0$ usamos a notação $I(O,k)$.
Desta definição de $I(O,r)$, decorre que a cada ponto $P$ do plano, distinto de $O$, corresponde um único inverso $P'$ e que, se $P'$ é o inverso de $P$ também $P$ é o inverso de $P'$. Como não há correspondente do centro $O$ de inversão, $I(O,r)$ não é uma transformação do conjunto de todos os pontos do plano em si mesmo.
Também é verdade que fica estabelecida uma correspondência, um a um, entre os pontos do interior da circunferência (distintos de $O$) e os pontos do exterior da circunferência de inversão; que cada ponto da circunferência de inversão é inverso de si mesmo e que o conjunto dos pontos (distintos de $O$) de uma reta que passe por $O$ é imagem de si mesmo (no seu todo e não ponto a ponto, só os pontos da circunferência são inversos de si mesmos).
A construção que se segue, da inversão $I(O,9)$, pretende ilustrar isso mesmo. Pode deslocar $P$, assumindo qualquer posição do plano para acompanhar o que acontece nas diferentes posições.
Nesta construção, determinamos os inversos dos pontos $P$ por $I(O,9)$, com recurso ao teorema de Thales (ou a triângulos semelhantes)
- Começámos por tomar a reta $OP$ que interseta a circunferência em $A$ — $\overline{OA}=3$
- Tiramos pelo ponto $O$ uma outra reta qualquer, distinta de $OP$, e chamámos $B$ ao seu ponto sobre a circunferência de inversão — $\overline{OB}=3$
- Traçada a reta $PB$, por $A$ tirámos uma paralela a $PB$ e chamámos $C$ à interseção desta com $OB$. Resulta, da semelhança dos triângulos $[OPB]$ e $[OAC]$, $$\frac{\overline{OP}}{\overline{OB}}=\frac{\overline{OA}}{\overline{OC}} \;\;\; \mbox{ou}\; \;\; \overline{OP}\times \overline{OC} = \overline{OA} \times \overline{OB}=9$$.
- $P'$ será o ponto de $OP$ tal que $\overline{OP'}=\overline{OC}$
Howard Eves, Fundamentals of Modern Elementary Geometry . Jones and Bartlett Pub. Boston:1992
23.7.13
Inversão (e diversão)
Pedido de ajuda:
Temos tido problemas com a visualização de "applets" construídos com geogebra. Agradecemos que nos informem quando vêem e quando não vêem as ilustrações animadas.
Na construção abaixo, pretendemos ilustrar que, por uma inversão relativa a uma circunferência,seu centro e respetivo raio, a imagem de um ponto no interior da circunferência é um ponto do seu exterior (e reciprocamente) e que a imagem da circunferência de inversão é ela mesma. Para isso, determinamos as imagens, relativamente à circunferência vermelha, das circunferências concêntricas com a circunferência de inversão.
E se invertermos circunferências não concêntricas com a circunferência de inversão? Experimente. No caso da ilustração abaixo, pus-me a bordar invertendo circunferências não concêntricas com a circunferência de inversão.
Temos tido problemas com a visualização de "applets" construídos com geogebra. Agradecemos que nos informem quando vêem e quando não vêem as ilustrações animadas.
Na construção abaixo, pretendemos ilustrar que, por uma inversão relativa a uma circunferência,seu centro e respetivo raio, a imagem de um ponto no interior da circunferência é um ponto do seu exterior (e reciprocamente) e que a imagem da circunferência de inversão é ela mesma. Para isso, determinamos as imagens, relativamente à circunferência vermelha, das circunferências concêntricas com a circunferência de inversão.
E se invertermos circunferências não concêntricas com a circunferência de inversão? Experimente. No caso da ilustração abaixo, pus-me a bordar invertendo circunferências não concêntricas com a circunferência de inversão.
17.7.13
Inscrever um losango de área dada num paralelogramo dado
Apresentamos mais uma resolução de problema que recorre à inversão:
Dado um paralelogramo $\;[ABCD]$, determinar um losango $\;[MNPQ]\;$ nele inscrito e com uma área dada.
No caso da nossa construção procurámos um losango de área $72$.
- No paralelogramo $[ABCD]$ as diagonais — $AC, BD$ — intersetam-se num ponto $O$. Qualquer outro paralelogramo $[MNPQ]$ em que $M \in AB, N \in BC, P\in CD, Q \in DA$ tem o mesmo centro $O$, ou seja, $MP.NQ={O}$
- A área de tal losango é dada pelo semiproduto das suas diagonais $$\frac{MP \times NQ}{2} = \frac{2OP \times 2OQ}{2} =2\times OP \times OQ$$
- Já que a área é 72, $OP \times OQ =36$. Sabemos que uma circunferência de raio $6$ e centro $O$ define uma inversão e, para ela, o ponto $E$ de $[AD]$ tem um correspondente $E'$, sendo $OE \times OE'=36$. Como as diagonais do losango são perpendiculares, escolhemos $E$ como pé da perpendicular a $AD$ tirada por $O$.
- Determinado $E'$ sobre $OE$, bastará efetuar uma rotação, de centro $O$ e um ângulo reto de amplitude, da circunferência de diâmetro $[OE']$ que deve intersetar o lado $CD$ em um ou dois pontos. Escolhemos um deles para o vértice $P$ do losango
- Conhecido $P$, ${M}=AB.OP$ e tirando por $O$ uma perpendicular a $OP$ esta interseta $AD$ e em $BC$ nos pontos $Q$ e $N$, respetivamente.