Na construção que se segue, tomámos AB=c, variável, e construímos o triângulo tomando para lados AC=b=c.√Φ e BC=a=c/√Φ.
O triângulo assim obtido é um triângulo retângulo em B.
Esta família de triângulos retângulos é a única de lados em progressão geométrica.
De facto,
Sendo ABC um triângulo retângulo cujos lados meçam c/r, c, c.r (progressão geométrica de razão r), temos:
(c/r)
2 + c
2 = (cr)
2 ou (r
2)
2 - r
2 - 1 = 0.
Ora a raiz positiva desta equação do 2º grau em r
2 é (1 + √5)/2, ou seja, o número de ouro.
Concluíndo: se num triângulo retângulo os lados estão em progressão geométrica, o quadrado da razão da progressão é "o número de ouro".