7.6.11

Grupos de Simetria - nota de abertura.

O conjunto das isometrias (translações, rotações, reflexões e reflexões deslizantes) do plano, munido da composição de funções, é um grupo. Vimos que a composta de duas isometrias é ainda uma isometria, que a composição é comutativa, associativa, tem elemento neutro (identidade) e que para cada isometria há uma outra que, por composição, a neutraliza. Na abordagem que fizemos antes (de 30/10/2009 a 29/11/2009 ), também verificámos que o conjunto das translações é um subgrupo do grupo das isometrias, bem como é subgrupo o conjunto das rotações munido da composição. Já não acontece o mesmo com o conjunto das reflexões.

Dizemos que uma figura geométrica, F, do plano é simétrica (ou tem simetria) quando há uma isometria do plano que a faz corresponder a si mesma. Por exemplo, a reflexão de eixo AC aplicada a um quadrado ABCD faz corresponder A a A, C a C, B a D e D a B e obviamente, mantém invariantes os pontos do segmento AC (no quadrado) e faz corresponder a cada um dos outros pontos do quadrado, um outro ponto do quadrado. À recta AC chamamos por isso eixo de simetria do quadrado ABCD. Para além de várias reflexões, há várias rotações que transformam cada ponto de um quadrado noutro ponto do mesmo quadrado, no caso mantendo um só ponto invariante - centro da rotação. Já por uma translação associada a um vector não nulo, uma figura geométrica nunca é transformada em si mesma.

Na construção que se segue, clique no botão "reflexão" para seguir um ponto P e a sua reflexão no espelho e=AC e verificar que cada ponto do quadrado tem imagem no quadrado e se sair do quadrado a imagem de P cai fora dele. Clicando sobre o botão da reflexão para a ocultar, ao clicar no no botão "rotação" (de centro O e amplitude +90) pode fazer verificação do mesmo tipo. Um ponto P do quadrado tem imagem no quadrado e do exterior do quadrado tem imagem no exterior.


Etiquetas:

30.5.11

Relações métricas no paralelogramo



26.5.11

Relações métricas no paralelogramo



24.5.11

Relações métricas no paralelogramo



Etiquetas: , ,

23.5.11

Relações métricas no paralelogramo



Etiquetas: , ,

19.5.11

Relações métricas no paralelogramo



17.5.11

Relações métricas no paralelogramo



Relações métricas no paralelogramo

Dado um paralelogramo ABCD, por C traça-se uma reta r que divida a diagonal BD em duas partes, EB e ED, tais que EB=4.ED. Seja F o ponto de interseção de r com AD. Verifica-se que FA=3.FD.




Uma recta tirada pelo vértice C de um paralelogramo que determina na diagonal oposta BD a sua quinta parte determinará no lado AD a sua quarta parte.
Este resultado pode generalizar-se obviamente e a sua demonstração baseia-se na semelhança entre os triângulos BCE e DEF.

15.5.11

Relações métricas no paralelogramo

Tomemos um paralelogramo ABCD e uma reta r passando por A que não corte o paralelogramo. Para os segmentos BB', CC' e DD', das perpendiculares a r tiradas por B, C e D, verifica-se que
CC'= BB' + DD'

se C for o vértice do paralelogramo oposto a A.




Demonstre esse resultado.
O que acontece se r cortar o paralelogramo?

13.5.11

Relações métricas no paralelogramo

Num paralelogramo ABCD, tomemos os pontos médios de AB e CD, M e N respectivamente. DM e BN cortam a diagonal AC em dois pontos R e S que a cortam em três segmentos iguais

Na construção dinâmica que se apresenta a seguir pode verificar que assim parece. Desloque os vértices do quadrilátero livremente para ver o que se passa. Pode provar o resultado?


11.5.11

Relações métricas nos quadriláteros - lados e diagonais

A soma das diagonais de um quadrilátero convexo está entre os seus semiperímetro e perímetro.

Na construção dinâmica que se apresenta a seguir pode verificar que assim é. E também que assim não é para quadriláteross côncavos. Desloque os vértices do quadrilátero livremente para ver o que se passa. Depois, pode pensar em justificar esse resultado.


2014
EUCLIDES
Instrumentos e métodos

de resolução de problemas de construção