1.7.09

Primeira cissóide

Tomem-se duas curvas a e b, um ponto O e uma recta r passando por O que corte as duas curvas em P e Q.
O lugar geométrico dos pontos C da rectar tais que |OC| =||OQ|-|OP|| é a cissóide das curvas a e b relativamente ao ponto O.






No caso da construção desta entrada, tomamos duas rectas para curvas. Pode arrastar as rectas (curvas) e variar a inclinação de de uma delas usando um ponto a verde sobre b. Fixando O e as curvas, pode seguir o curso de C sobre a cissóide respectiva, deslocando P sobre a (que é acompanhado pela variação da recta r). Pode deslocar O, mantendo invariantes as curvas e verificar que para cada O é gerada uma cissóide diferente. Pode variar as curvas e as relações entre elas, mantendo O invariante, e observar as diferentes cissóides para diferentes curvas.

1 comentário:

75b7b35a disse...

Interessante que se as curvas forem retas paralelas, a cissóide vai ser uma reta paralela às outras duas.