29.11.07

Baricentro de três pontos

Consideremos 3 pontos e respectivas massas (A, mA), (B, mB) e (C, mC). O seu baricentro pode ser determinado substituindo A e B pelo seu baricentro (G1, mA+ mB) e calculando depois, do mesmo modo, o baricentro G dos 3 pontos que não é mais que o baricentro dos pontos (G1, mA+ mB) e (C, mC).

Apresentamos, de seguida, o exercício interactivo de determinação do baricentro de 3 pontos dados A, B, C com as respectivas massas. Após a sua resolução, com solução reconhecida automaticamente, pode fazer variar as massas e a localização dos pontos para confirmar a estabilidade da sua construção dinâmica.

25.11.07

Equilíbrios. Baricentro.

As últimas entradas referem-se praticamente todas à divisão de triângulos em triângulos equivalentes. A maior parte dos exercícios propostos resolvem-se com recurso a pontos médios e a medianas. O ponto médio de um segmento ou de uma barra homogénea é o seu ponto de equilíbrio. Um triângulo homogéneo é dividido em duas partes equivalentes por qualquer das suas medianas... O ponto de encontro das medianas de um triângulo homogéneo é um seu ponto de equilíbrio.

Apresentamos, de seguida, a construção geométrica relativa ao baricentro (G, mA+mB) de dois pontos (A, mA) e (B, mB). Quando mA=mB, G é o ponto médio de [AB]. As distâncias GA e GB são inversamente proporcionais a mA e mB. Na construção que se segue pode fazer variar os valores mA e mB, bem como as direcções das rectas auxiliares da aplicação do teorema de Thales.




Mariana Sacchetti recomenda vivamente a leitura das notas de Nestor Aguilera El baricentro y la divisón en dos partes de igual área.

18.11.07

De um "puzzle" a um "teorema"

Na entrada Dividir para fazer um tangram, escrevemos:
Daniel Scher termina o seu artigo A Triangle Divided: Investigating Equal Areas já referido, com uma proposta de puzzle (tangram?) feita sobre um rectângulo equivalente a um triângulo com as peças coloridas (pela divisão em quatro triângulos equivalentes).

Na altura, internamente, foram levantadas algumas dúvidas sobre o interesse dessa entrada, até porque nem tinha qualquer animação. O publicador:-) estava mesmo convencido que já tinha visto essa animação (da transformação do triângulo num rectângulo equivalente) no Atractor e procurou ligações. Por enquanto, e no pouco tempo que a esse assunto dedicou, ainda não encontrou. Mas já tinha tropeçado muitas vezes com o assunto (ou variante) em vários livros. E, antes de mudar de assunto, aproveita para referir uma ligação.
Como se pode ver nas figuras abaixo, feitas a partir da última divisão em 4 sugerida por Paulo Correia, de Alcácer do Sal, há um triângulo e um rectângulo equivalentes e compostos por um mesmo número de peças não só equivalentes, como congruentes (geometricamente iguais), disjuntas, sem sobreposições,....


No seu livro Matemática e Ensino, publicado, em Portugal, pela Gradiva(colecção Temas de Matemática), Elon Lages Lima define como polígonos equidecomponíveis os que admitem decomposições nas condições referidas. Na deambulação pelas divisões, estivemos sempre a trabalhar com polígonos com a mesma área. Elon Lages Lima afirma o óbvio de dois polígonos equidecomponíveis terem a mesma área, para chamar a atenção para a não evidência do recíproco

Teorema de Bolyai: Dois polígonos com a mesma área são equidecomponíveis.


Para aguçar a curiosidade, citamos Elon Lages Lima: ...Este teorema foi demonstrado em 1832 por F. Bolyai e, independentemente, em 1833 por P. Gerwien. F. Bolyai era o pai do famoso matemático húngaro Janos Bolyai, que descobriu a Geometria Hiperbólica (que também foi descoberta por Lobatshevski e Gauss). Gerwien era um matemático amador alemão.
O teorema de F. Bolyai é um facto geometricamente interessante, cuja prova se baseia em argumentos bem simples. ...


Valerá a pena publicar as construções exemplares relativas aos argumentos bem simples? Talvez.

Dividir em 4... à Paulo Correia

Paulo Correia escreveu-nos. Para nos dizer que nos enganámos e que o último exercício (que lhe atribuímos) era equivalente a um outro, publicado anteriormente. E para nos reenviar o que ele sabe o que falta. Eu não tenho a certeza de coisa alguma que tenha ficado guardada num computador que adormeceu nos Açores.
Agradecemos. Aqui fica.


Determinar os pontos D, E, F de tal modo que o triângulo [ABC] fique dividido em 4 triângulos equivalentes [AED], [BED], [CED] e [CAF]

12.11.07

Dividir em 4... à Paulo Correia

Outra proposta de Paulo Correia para a divisão de um triângulo em 4 equivalentes:
Determinar os pontos D e E que são vértices dos 4 triângulos [ABE], [BDE], [CDE] e [ACE] equivalentes em que o triângulo [ABC] fica dividido.

4.11.07

Dividir em 4 ... ainda

Paulo Correia, de Alcácer do Sal, tinha-nos enviado uma divisão de um triângulo em 4 figuras equivalentes. Não a publicámos então por não tratar da divisão em tirângulos. Mais tarde havemos de publicá-la (se percebermos, como exercício interactivo ...) .
Mas, agora, quando verificou que tínhamos dado por encerrada a série da divisão de um triângulo em 4 triângulos equivalentes, Paulo Correia insistiu com novas propostas. Pelo menos duas divisões interessantes e simples teriam sido esquecidas por nós. Tem razão (arrisco-me a pensar). E aqui vai a primeira:

Determinar os pontos D e E que são vértices dos 4 triângulos [ADE], [AEB], [BEC] e [CDE] equivalentes em que o triângulo [ABC] fica dividido.




Agradecemos ao Paulo.

3.11.07

Dividir para fazer um " tangram"?

Daniel Scher termina o seu artigo A Triangle Divided: Investigating Equal Areas já referido, com uma proposta de puzzle (tangram?) feita sobre um rectângulo equivalente a um triângulo com as peças coloridas (pela divisão em quatro triângulos equivalentes), da forma que mostra a construção que se segue e em que pode deslocar os vértices do triângulo. Não é uma boa ideia?



Esta construção está feita para mostrar como podemos obter um conjunto de peças em papel seguindo uma divisão do triângulo em 4 triângulos equivalentes e o corte paralelo a uma das bases a meio da altura correspondente. O conjunto de oito peças, assim obtido, permite ser reagrupado para formar um rectângulo ou para formar um triângulo. Nada mais do que isso. Não, não é um jogo para ser jogado aqui mesmo :-)