18.11.07

De um "puzzle" a um "teorema"

Na entrada Dividir para fazer um tangram, escrevemos:
Daniel Scher termina o seu artigo A Triangle Divided: Investigating Equal Areas já referido, com uma proposta de puzzle (tangram?) feita sobre um rectângulo equivalente a um triângulo com as peças coloridas (pela divisão em quatro triângulos equivalentes).

Na altura, internamente, foram levantadas algumas dúvidas sobre o interesse dessa entrada, até porque nem tinha qualquer animação. O publicador:-) estava mesmo convencido que já tinha visto essa animação (da transformação do triângulo num rectângulo equivalente) no Atractor e procurou ligações. Por enquanto, e no pouco tempo que a esse assunto dedicou, ainda não encontrou. Mas já tinha tropeçado muitas vezes com o assunto (ou variante) em vários livros. E, antes de mudar de assunto, aproveita para referir uma ligação.
Como se pode ver nas figuras abaixo, feitas a partir da última divisão em 4 sugerida por Paulo Correia, de Alcácer do Sal, há um triângulo e um rectângulo equivalentes e compostos por um mesmo número de peças não só equivalentes, como congruentes (geometricamente iguais), disjuntas, sem sobreposições,....


No seu livro Matemática e Ensino, publicado, em Portugal, pela Gradiva(colecção Temas de Matemática), Elon Lages Lima define como polígonos equidecomponíveis os que admitem decomposições nas condições referidas. Na deambulação pelas divisões, estivemos sempre a trabalhar com polígonos com a mesma área. Elon Lages Lima afirma o óbvio de dois polígonos equidecomponíveis terem a mesma área, para chamar a atenção para a não evidência do recíproco

Teorema de Bolyai: Dois polígonos com a mesma área são equidecomponíveis.


Para aguçar a curiosidade, citamos Elon Lages Lima: ...Este teorema foi demonstrado em 1832 por F. Bolyai e, independentemente, em 1833 por P. Gerwien. F. Bolyai era o pai do famoso matemático húngaro Janos Bolyai, que descobriu a Geometria Hiperbólica (que também foi descoberta por Lobatshevski e Gauss). Gerwien era um matemático amador alemão.
O teorema de F. Bolyai é um facto geometricamente interessante, cuja prova se baseia em argumentos bem simples. ...


Valerá a pena publicar as construções exemplares relativas aos argumentos bem simples? Talvez.

Dividir em 4... à Paulo Correia

Paulo Correia escreveu-nos. Para nos dizer que nos enganámos e que o último exercício (que lhe atribuímos) era equivalente a um outro, publicado anteriormente. E para nos reenviar o que ele sabe o que falta. Eu não tenho a certeza de coisa alguma que tenha ficado guardada num computador que adormeceu nos Açores.
Agradecemos. Aqui fica.


Determinar os pontos D, E, F de tal modo que o triângulo [ABC] fique dividido em 4 triângulos equivalentes [AED], [BED], [CED] e [CAF]

12.11.07

Dividir em 4... à Paulo Correia

Outra proposta de Paulo Correia para a divisão de um triângulo em 4 equivalentes:
Determinar os pontos D e E que são vértices dos 4 triângulos [ABE], [BDE], [CDE] e [ACE] equivalentes em que o triângulo [ABC] fica dividido.

4.11.07

Dividir em 4 ... ainda

Paulo Correia, de Alcácer do Sal, tinha-nos enviado uma divisão de um triângulo em 4 figuras equivalentes. Não a publicámos então por não tratar da divisão em tirângulos. Mais tarde havemos de publicá-la (se percebermos, como exercício interactivo ...) .
Mas, agora, quando verificou que tínhamos dado por encerrada a série da divisão de um triângulo em 4 triângulos equivalentes, Paulo Correia insistiu com novas propostas. Pelo menos duas divisões interessantes e simples teriam sido esquecidas por nós. Tem razão (arrisco-me a pensar). E aqui vai a primeira:

Determinar os pontos D e E que são vértices dos 4 triângulos [ADE], [AEB], [BEC] e [CDE] equivalentes em que o triângulo [ABC] fica dividido.




Agradecemos ao Paulo.

3.11.07

Dividir para fazer um " tangram"?

Daniel Scher termina o seu artigo A Triangle Divided: Investigating Equal Areas já referido, com uma proposta de puzzle (tangram?) feita sobre um rectângulo equivalente a um triângulo com as peças coloridas (pela divisão em quatro triângulos equivalentes), da forma que mostra a construção que se segue e em que pode deslocar os vértices do triângulo. Não é uma boa ideia?



Esta construção está feita para mostrar como podemos obter um conjunto de peças em papel seguindo uma divisão do triângulo em 4 triângulos equivalentes e o corte paralelo a uma das bases a meio da altura correspondente. O conjunto de oito peças, assim obtido, permite ser reagrupado para formar um rectângulo ou para formar um triângulo. Nada mais do que isso. Não, não é um jogo para ser jogado aqui mesmo :-)

30.10.07

Dividir em 4 para reinar :-)))))))

Determinar D e E vértices dos quatro triângulos equivalentes [ADE], ADC], [CDE] e [BCE] em que fica dividido o triângulo [ABC].




Parece-nos que podemos dar por findos os processos de dividir um triângulo em quatro triângulos equivalentes. Não vos parece? Valerá a pena pensar em processos de divisão em 5 triângulos equivalentes?

28.10.07

Dividir em 4 para reinar :-))))))

Determinar D, E e F vértices dos quatro triângulos equivalentes [ABD], [BEF], [CEF] e [CDE] em que fica dividido o triângulo [ABC].

27.10.07

Dividir em 4 para reinar :-)))))

Determine D, E, F, AD, BE e BF, vértices e lados dos quatro triângulos equivalentes [ADC], [BED], [BEF] e [BFA] em que fica dividido o triângulo [ABC].

24.10.07

Dividir em 4 para reinar :-))))

Determine M, N, P e MN, NP e MP, vértices e lados dos triângulos equivalentes [APN], [BMN] e [CNM] em que fica dividido o triângulo [ABC].



Este processo que temos vindo a utilizar pode servir para mais de 30 diferentes divisões em triângulos equivalentes.
Paulo Correia, de Alcácer do Sal, enviou-nos uma divisão em 4 figuras equivalentes, das quais uma é um triângulo. Obrigado, Paulo. Mas nós estamos a dividir um triângulo em triângulos equivalentes e isso é, em si mesmo, o romance. E vamos continuar este trabalho que nos é sugerido no artigo de Daniel Scher, intitulado "A Triangle divided: Investigating Equal Areas" e publicado na revista Mathematics Teacher, Vol. 93, n. 7. October 2000. Pensamos que procurar formas diferentes de dividir um triângulo em figuras de igual área (equivalentes) pode ser uma proposta interessante a fazer a estudantes jovens.

Dividir em 4 para reinar :-)))

Determinar os pontos D, E, F e os segmentos CE, DE, E EF elementos dos triângulos equivalentes [AED], [CDE], [CEF] e [BEF] em que fica dividido o triângulo [ABC].



Para cada divisão que fazemos, quantas há diferentes que podems er feitas por processo absolutamente análogo? De quantos modos mais podemos dividir um triângulo em quatro equivalentes?

22.10.07

Dividir em 4 para reinar :-))

Mais uma forma de dividir um triângulo em 4 triângulos equivalentes. Determine os pontos D, E, F e os segmentos DE, CE e CF, vértices e lados dos triângulos equivalentes [CDE], [ADE], [CEF] e [CFB] em que fica dividido o triângulo [ABC]

Dividir em 4 para reinar :-)

Com as infinitas (?) possibilidades de dividir um triângulo em quatro triângulos equivalentes, isto de dividir triângulos ganha um certo encanto. Não tanto por cada uma das divisões, mas pelas tentativas de as procurar sem esquecer qualquer uma delas.
A primeira é puro engano, tal é a facilidade da resolução do exercício que propomos.

Determinar D, E e F e os lados dos triângulos [BCD], [BDE], [BEF] e [ABF] equivalentes em que dividimos o triângulo [ABC].



Claro que, por este proocesso, podemos fazer outras divisões em 4 equivalentes.

Esperamos que possa agora movimentar os vértices A, B e C. Mas não é seguro que tal aconteça.

2014
EUCLIDES
Instrumentos e métodos

de resolução de problemas de construção