A não perder:
EDUARDO VELOSO, Uma curva de cada vez..
O caracol de Pascal,
Educação e Matemática, revista da A.P.M, nº 138: 2016
História da Matemática, Curvas, Ferramentas, Tecnologia: para estudar e construir.

4.11.07

Dividir em 4 ... ainda

Paulo Correia, de Alcácer do Sal, tinha-nos enviado uma divisão de um triângulo em 4 figuras equivalentes. Não a publicámos então por não tratar da divisão em tirângulos. Mais tarde havemos de publicá-la (se percebermos, como exercício interactivo ...) .
Mas, agora, quando verificou que tínhamos dado por encerrada a série da divisão de um triângulo em 4 triângulos equivalentes, Paulo Correia insistiu com novas propostas. Pelo menos duas divisões interessantes e simples teriam sido esquecidas por nós. Tem razão (arrisco-me a pensar). E aqui vai a primeira:

Determinar os pontos D e E que são vértices dos 4 triângulos [ADE], [AEB], [BEC] e [CDE] equivalentes em que o triângulo [ABC] fica dividido.




Agradecemos ao Paulo.

3.11.07

Dividir para fazer um " tangram"?

Daniel Scher termina o seu artigo A Triangle Divided: Investigating Equal Areas já referido, com uma proposta de puzzle (tangram?) feita sobre um rectângulo equivalente a um triângulo com as peças coloridas (pela divisão em quatro triângulos equivalentes), da forma que mostra a construção que se segue e em que pode deslocar os vértices do triângulo. Não é uma boa ideia?



Esta construção está feita para mostrar como podemos obter um conjunto de peças em papel seguindo uma divisão do triângulo em 4 triângulos equivalentes e o corte paralelo a uma das bases a meio da altura correspondente. O conjunto de oito peças, assim obtido, permite ser reagrupado para formar um rectângulo ou para formar um triângulo. Nada mais do que isso. Não, não é um jogo para ser jogado aqui mesmo :-)

30.10.07

Dividir em 4 para reinar :-)))))))

Determinar D e E vértices dos quatro triângulos equivalentes [ADE], ADC], [CDE] e [BCE] em que fica dividido o triângulo [ABC].




Parece-nos que podemos dar por findos os processos de dividir um triângulo em quatro triângulos equivalentes. Não vos parece? Valerá a pena pensar em processos de divisão em 5 triângulos equivalentes?

28.10.07

Dividir em 4 para reinar :-))))))

Determinar D, E e F vértices dos quatro triângulos equivalentes [ABD], [BEF], [CEF] e [CDE] em que fica dividido o triângulo [ABC].

27.10.07

Dividir em 4 para reinar :-)))))

Determine D, E, F, AD, BE e BF, vértices e lados dos quatro triângulos equivalentes [ADC], [BED], [BEF] e [BFA] em que fica dividido o triângulo [ABC].

24.10.07

Dividir em 4 para reinar :-))))

Determine M, N, P e MN, NP e MP, vértices e lados dos triângulos equivalentes [APN], [BMN] e [CNM] em que fica dividido o triângulo [ABC].



Este processo que temos vindo a utilizar pode servir para mais de 30 diferentes divisões em triângulos equivalentes.
Paulo Correia, de Alcácer do Sal, enviou-nos uma divisão em 4 figuras equivalentes, das quais uma é um triângulo. Obrigado, Paulo. Mas nós estamos a dividir um triângulo em triângulos equivalentes e isso é, em si mesmo, o romance. E vamos continuar este trabalho que nos é sugerido no artigo de Daniel Scher, intitulado "A Triangle divided: Investigating Equal Areas" e publicado na revista Mathematics Teacher, Vol. 93, n. 7. October 2000. Pensamos que procurar formas diferentes de dividir um triângulo em figuras de igual área (equivalentes) pode ser uma proposta interessante a fazer a estudantes jovens.

Dividir em 4 para reinar :-)))

Determinar os pontos D, E, F e os segmentos CE, DE, E EF elementos dos triângulos equivalentes [AED], [CDE], [CEF] e [BEF] em que fica dividido o triângulo [ABC].



Para cada divisão que fazemos, quantas há diferentes que podems er feitas por processo absolutamente análogo? De quantos modos mais podemos dividir um triângulo em quatro equivalentes?

22.10.07

Dividir em 4 para reinar :-))

Mais uma forma de dividir um triângulo em 4 triângulos equivalentes. Determine os pontos D, E, F e os segmentos DE, CE e CF, vértices e lados dos triângulos equivalentes [CDE], [ADE], [CEF] e [CFB] em que fica dividido o triângulo [ABC]

Dividir em 4 para reinar :-)

Com as infinitas (?) possibilidades de dividir um triângulo em quatro triângulos equivalentes, isto de dividir triângulos ganha um certo encanto. Não tanto por cada uma das divisões, mas pelas tentativas de as procurar sem esquecer qualquer uma delas.
A primeira é puro engano, tal é a facilidade da resolução do exercício que propomos.

Determinar D, E e F e os lados dos triângulos [BCD], [BDE], [BEF] e [ABF] equivalentes em que dividimos o triângulo [ABC].



Claro que, por este proocesso, podemos fazer outras divisões em 4 equivalentes.

Esperamos que possa agora movimentar os vértices A, B e C. Mas não é seguro que tal aconteça.

18.10.07

Dividir em 3 para reinar

Aqui apresentamos dois exercícios interactivos sobre a divisão de um triângulo em 3 triângulos equivalentes.
No primeiro, pedimos que determine os pontos D e E e os lados CD e CE dos triângulos equivalentes em que fica dividido o triângulo [ABC]



No segundo, pedimos a determinação do ponto D e dos lados AD, BD e CD dos triângulos equivalentes em que fica dividido o triânguo [ABC]



Há mais divisões em 3 triângulos equivalentes? Quantas mais? Processos diferentes destes? Não quer publicar a sua opinião e resolução?

Como será a divisão em quatro triângulos? De quantos modos?

17.10.07

Dividir para reinar

Já várias vezes, aqui tratámos de figuras equivalentes e de divisão de figuras em figuras equivalentes. Particularmente abordada foi a divisão em 2 triângulos equivalentes operada num triângulo qualquer por uma das suas medianas.
Como mostra a construção que se segue (em que pode movimentar os vértices A, B ou C do triângulo) pode confirmar o que sempre soube.

De quantas maneiras pode dividir um triângulo em dois triângulos equivalentes? E em três?
Durante algum tempo, vamos tratar da divisão de um triângulo em triângulos equivalentes. Quer começar a pensar na divisão em três?

11.10.07

Cortar um cubo

Não temos tido grandes resultados nas tentativas para as representações no plano de objectos tridimensionais. Quer nos desenhos que nos são devolvidos pelos estudantes, e mesmo na publicação de exercícios que recorrem a polígonos. Acontecem-nos mensagens de erro mesmo em exercícios simples como o que apresentamos a seguir. Começamos por tentar trabalhar com uma construção como a que se segue.

E recebemos de volta sucessivas mensagens de erro.

Com cubos nas mãos, os estudantes do 10º ano procuram determinar em que condições um plano determina secções triangulares, quadrangulares, etc. As peças desenhadas durante esse trabalho mostram-nos as dificuldades em obter desenhos esclarecedores e por isso não é de estranhar que apareça a máquina fotográfica digital para registar uma ou outra vitória.
Agora, tomemos um cubo representado, como mostra a nossa figura, que possibilita acompanhar os raciocínios construtivos na base dos axiomas e teoremas simples da geometria euclideana. Propomos a determinação da secção obtida quando o cubo é cortado pelo plano M, N e P. E recomendamos a cada estudante que mencione cada passo da resolução, justificando-o.

O exercício acabou numa representação como a que se segue e que ainda não está livre de mensagem de erro num ou outro computador.

2014
EUCLIDES
Instrumentos e métodos

de resolução de problemas de construção