A não perder:
EDUARDO VELOSO, Uma curva de cada vez..
O caracol de Pascal,
Educação e Matemática, revista da A.P.M, nº 138: 2016
História da Matemática, Curvas, Ferramentas, Tecnologia: para estudar e construir.

8.8.05

Sobre a demonstração


Demonstrar que as paralelas a dois lados de um triângulo que passem pelo baricentro dividem o terceiro lado em três partes iguais.


Antes de nos embrenharmos no mês de Agosto, a respeito de vários dos problemas que deixámos para as férias, ao de leve, ainda discutimos - Arsélio & Aurélio - o papel das construções e do Cinderella como prova (ou como demonstração) desta ou daquela afirmação. Na ilustração que aqui publico, os vértices do triângulo ABC são aqueles como podem ser outros (bastando movê-los, livres e ansiosos por um pé de dança), G é obviamente o centro de gravidade, MK paralela a BC e HL paralela a AC. H e K não dividem o lado [AB] em três partes iguais?
Para termos uma prova boa, precisaremos de acrescentar alguma informação à construção, acompanhada do Texto da construção (geometria analítica) e conteúdo da Janela de informação?
Este problema é um dos que já foi apresentado duas vezes, sem que alguém o tenha amado tanto quanto um problema merece. Aqui fica um novo pedido de atenção. Pensamos que são fáceis. Mas, por exemplo, o 3º da lista republicada no artigo - Construçaõ de um triângulo dados os pontos médios dos lados - levanta-nos problemas graves de leitura do enunciado. Quem pode ajudar-nos a ler Puig Adam? Adaptámos bem?

1.8.05

Tangente a um círculo - só com régua

Mariana Sacchetti resolveu o problema de tirar por um ponto P as tangentes a um círculo dado (tal como tinha sido proposto no Geometriagon , só com régua). Ao tentar recriar a sua construção como exercício interactivo para publicar aqui, apareceram-nos vários problemas com que não contávamos. Mas aqui fica uma versão do exercício. As ferramentas disponíveis são: a primeira para permitir mover os elementos desenhados, a segunda para marcar livres ou sujeitos a pertencer a rectas ou círculo, a terceira para traçar rectas por um ponto, a quarta para marcar o ponto de intersecção de duas rectas seleccionadas, a quinta para voltar atrás, a quinta para pedir ajuda e uma sexta para voltar ao princípio de tudo). Pode acontecer que alguma das ferramentas precise de insistência. No caso desta versão de exercício, aconteceu-nos muitas vezes que cada recta que deesenhamos como secante ao círculo não fica logo na posição que queremos. Isso só nos obriga a usar a primeira ferramenta e deslocar a recta para onde queremos. A Mariana teve o cuidado de nos enviar as justificações todas sobre as suas construções. Pedimos desculpa à Mariana pelos atrasos e pela nossa insistência em experimentar transformar a sua resolução em exercício interactivo.

Clique em "uma versão do exercício" para ter acesso ao exercício interactivo que lhe propomos.
Clique em "justificações todas sobre as suas construções"(.pdf) para descarregar o texto da Mariana.

20.7.05

Construção de um triângulo dados os pontos médios dos lados

Andreia Figueiredo escreveu-nos uma mensagem com propostas de construções. Escreve ela:
(...)foi-nos possibilitada a exploração de algumas das enumeras potencialidades do programa de geometria dinâmica de nome Cinderella. Após algumas experiências, apercebemo-nos logo do seu elevado valor como instrumento auxiliar no ensino da geometria a alunos do ensino básico e secundário. Deste modo, foi-nos apresentado o vosso Blog de Geometria, que nos desafia a resolver, com o Cinderella, alguns problemas de geometria, com o objectivo de nos pôr a praticar.
Assim, queria apresentar a minha resolução para dois exercícios propostos no vosso blog. Os exercícios que resolvi são da autoria de Puig Adam e encontram-se expostos na secção intitulada Pontos e rectas notáveis de um triângulo. Seguidamente, apresento os seus enunciados, bem como, o processo que proponho para a sua resolução explicado passo a passo.
EXERCÍCIO 1:
Construir um triângulo do qual se conhecem os pontos médios dos seus lados.


Da lição de Puig Adam, referida por Andreia, então escolhemos 8 exercícios para propor aos leitores. Eram eles:


1. Demonstrar que as paralelas a dois lados de um triângulo que passem pelo baricentro dividem o terceiro lado em três partes iguais.
2.Demonstrar que a recta que une o vértice A de um triângulo [ABC] com o incentro I corta a circunferência circunscrita num ponto P equidistante de B, de I e de C.
3. Em que circunstâncias é que os quatro lados de um quadrilátero determinam dois a dois quatro triângulos dos quais as circunferências circunscritas passam por um mesmo ponto M? Enunciar e demonstrar o resultado.
4. Demonstrar que os circuncentros dos quatro triângulos em que um quadrilátero convexo fica dividido pelas suas diagonais são vértices de um paralelogramo.
5. Construir um triângulo de que se conhece um lado e duas medianas
6. Demonstrar que o triângulo dos exincentros é sempre acutângulo.
7. Demonstrar que a recta de Simson relativa ao ponto P está a igual distância de P e do ortocentro H.
8. Construir um triângulo de que se conhece os pontos médios dos seus lados. E um pentágono? E um heptágono? O que se passa se o polígono tiver um número par de lados?


Aqui ficam de novo para despertar o apetite.

A proposta de exercício de Andreia Figueiredo reporta-se a parte do exercício 8 desta lista. Que aqui fica proposto como exercício interactivo. Para fazer o trabalho clique aqui.

18.7.05

a quadratura do rectângulo


Quando se fazem índices, descobrem-se os desafios que não tiveram resposta. Apareceram muitos. Hoje decidi lembrar os que foram apresentados no artigo Quadratura de Polígonos a partir de um artigo de Carmen Galván, publicado no primeiro número da Unión - Revista Iberoamericana de Educación Matemática. E começamos por apresentar a resolução do mais simples: Construir o quadrado equivalente a um rectângulo dado.



Para ver a construção interactiva, clique sobre a ilustração.

11.7.05

Polar de um ponto


Considere um ponto P e uma circunferência. Por P tire secantes à circunferência. Obtém um quadrilátero [ABCD] inscrito na circunferência. Chame I ao ponto de encontro das suas diagonais.
Qual é o lugar geométrico dos pontos I quando variam as secantes tiradas por P?




Para ver a construção interactiva, clique sobre a ilustração.



Ao lugar geométrico dos pontos I, damos o nome de polar do ponto P relativamente à circunferência.


2014
EUCLIDES
Instrumentos e métodos

de resolução de problemas de construção