27.11.05

O triângulo de dois lados e uma bissectriz


A construção de um triângulo [ABC] de que se conhecem os comprimentos |AB|, |AC| e |AF| sendo [AF] o segmento da bissectriz do ângulo A deu emprego a muita gente, fazendo da Mariana um autêntico vai-vem entre a lua da família dela e os "terra a terra" =[:-)] da escola.
Publicamos aqui uma construção que pode ser acedida passo a passo, carregando na ferramenta interrogativa (?). Seria bom termos tempo para contar todos os episódios e o que vamos pensando sobre a matemática envolvida em cada uma das posições defendidas (a começar pelos erros que, algumas vezes, são concentrados das melhores ideias).




Para ver a nossa construção de mistura
carregue nesta ilustração.



Caronnet, Aurélio, Sacchettis(Mariana, Casimiro & Luz) e Arsélio andaram às voltas com esta construção. De tudo o que fomos fazendo, parece-nos um bom e esclarecedor resultado o que aqui apresentamos. Ao ver o que fica como resultado, não podem imaginar a quantidade de trabalho no computador e muito menos a quantidade de trabalho em papel Sacchetti ;-)

Como diz Aurélio, consideremos o problema resolvido. Vendo a figura com o triângulo [ABC], a partir do qual construímos o triângulo [ACJ] tal que |AC|=|AJ|=b e JC paralelo a AF, ficamos a saber que |JC|/i=(b+c)/c. E isso é tudo o que precisamos de saber. Pelo menos para nós que já nos deixámos enganar sobre a construção mais do que uma vez.
Esperamos que tenham gostado de pensar no assunto e da nossa construção aqui colocada para ser vista e criticada. Como todas as outras.

0 Commentários:

Enviar um comentário

<< Home

2014
EUCLIDES
Instrumentos e métodos

de resolução de problemas de construção