27.8.17

Dividir um triângulo em duas partes equivalentes sendo uma delas um triângulo rectângulo

Dividir um triângulo em duas partes equivalentes por uma perpendicular a um lDO
Dividir um triângulo em duas partes equivalentes
por uma perpendicular a um dos seus lados

Apresentamos a seguir uma construção dinâmica a ilustrar que para qualquer triângulo e um dos seus lados há uma perpendicular a esse lado que o divide em dois polígonos equivalentes

O enunciado do problema desta entrada é:
Dado um triângulo acutângulo $\;ABC\;$ determinar uma perpendicular a $\;BC,\;$por exemplo, que divide $\;ABC\;$ em duas partes iguais em área.

Pode seguir as etapas da nossa construção e notas de demonstração usando a barra de navegação para passos da construção ao fundo do rectângulo de visualização
  1. Apresenta-se inicialmente um triângulo $\;ABC.\;$
    • Sabemos que, das perpendiculares a $\;BC,\;$ a altura $\;AD\;$ divide o triângulo $\;ABC\;$ em duas partes.
      Quando e só quando $\;D\;$ é o ponto médio de $\;BC,\;$ $\;ABD\;$ é equivalente a $\;ACD\;$ e o segmento de reta que procuramos é a altura $\;AD\;$
    • Quando a área de $\;ABD\;$ é maior que a área de $\;BAD,\;$ a reta perpendicular que procuramos é paralela à altura e há-de cortar os lados $\;AB\;$ e $\;BC.\;$ Designemos por $\;A’\;$ e $\;D’\;$ esses pontos de intersecção que definem a reta perpendicular a $\;BC\;$ que divide em duas partes equivalentes o triângulo $$\; [ABC]=[A’BD’] \cup[AA’D’C]\; \;\; \wedge \mbox{Área de }\;\;[A’BD’] = \mbox{Área de }\;\;[AA’D’C] \; $$
      Como determinamos $\;D’$?
    • Quando a área de $\;ABD\;$ é menor que a área de $\;ADC,\;$ a reta perpendicular que procuramos é paralela à altura e há-de cortar os lados $\;AC\;$ e $\;BC.\;$ Designemos por $\;A’\;$ e $\;D’\;$ esses pontos de intersecção que definem a reta perpendicular a $\;BC\;$ que divide em duas partes equivalentes o triângulo $$\; [ABC]=[A’CD’] \cup[D’A’AB]\; \;\; \wedge\;\;\; \mbox{Área de }\;\;[A’D’C] = \mbox{Área de }\;\;[D’A’AB] \; $$
      Para este caso, a determinação de $\;D'\;$ segue os mesmos passos.
  2. 26 agosto 2017, Criado com GeoGebra

  3. Na figura agora apresentada, estão visíveis todos os elementos construtíveis auxiliares para a determinação da perpendicular $\;A’D’\;$ tal que $$\; [ABC]=[A’BD’] \cup[AA’D’C]\; \;\; \wedge \;\; \mbox{Área de }\;\;[A’BD’] = \mbox{Área de }\;\;[AA’D’C]. \; $$ Se se verificam as condições de divisão de $\;ABC\;$ em duas partes equivalentes, então $$\;\mbox{Área de}\;\;[ABC] = 2 \times \mbox{Área de}\;\;[A’BD’]\;\; \mbox{ou} \;\; \mbox{Área de}\;\;[A’BD’] = \frac{1}{2}\mbox{Área de}\;\;[ABC] $$ que é o mesmo que dizer $$\frac{BD’ \times A’D’}{2} = \frac{1}{2} \times \frac{BC\times AD}{2}$$ e, tomando o ponto $\;M\;$ médio de $\;BC\;$, que é tal que $\;\displaystyle BM=\frac{BC}{2},\;$ podemos escrever $$\mbox{Área de}\;\;[A’BD’] = \frac{BD’ \times A’D’}{2}= \frac{1}{2} (BM\times DA)$$ A condição para a posição de $\;A’D’\;$ pode assim resumir-se a $$\; BD’ \times A’D’ = BM\times DA \;\; \mbox{ou} \;\; \frac{BD’}{BM}=\frac{DA}{D’A’}$$ Como $\;A’D’\;$ e $\;AD\;$ são perpendiculares à mesma $\;BC\;$, os triângulos $\;ABD\;$ e $\;A’BD’ \;$ são retângulos com um ângulo comum $\;\hat{B}.\;$ $$\;\displaystyle \frac{DA}{D’A’} =\frac{BD}{BD’}\;$$ E podemos assim escrever $$\frac{BD’}{BM}=\frac{BD}{B’D’}\;\; \mbox{ou} \;\; BD’^2 = BM \times BD$$ o que nos determina a posição de $\;D’\;$ sobre $\;BC.\;$ Na nossa construção optámos por considerar a potência do ponto $\;B\;$ relativa à circunferência de diâmetro $\;MD\;$ e como o segmento da tangente a esse círculo tirada por $\;B\;$ é tal que $\;BT^2=BM \times BD\;$ sendo $\;T\; $ o ponto de tangência, $\;D’\;$ determina-se como um ponto de intersecção $\;[BC] \cap (B, \; BT)\;$
  4. Realçam-se o triângulo $\;A’BD’\;$ de área igual a metade da área de $\;ABC\;$ e o equivalente quadrilátero $\;AA’D’C\;$ ambos azulados.
  5. Quando passa para a etapa 4 na barra de navegação dos passos de construção, verá o mesmo que viu na etapa anterior a menos que coloque $\;A\;$ numa posição para a qual a área de $\;ABD\;$ seja menor que a área de $\;CAD.\;$ Deslocando $\;A\;$ para o lado de $\;B\;$ passará pelo caso em que $\;AD\;$ divide $\;ABC\;$ em dois triângulos iguais e finalmente para o caso em que uma perpendicular a $\;BC\;$ divide $\;ABC\;$ em duas partes equivalentes: $\;CA'D'\;$ e $\;ABD'A'\;$ esverdeadas.


Cluzel, R.; Robert, J-P. La Géometrie et ses applications. (Enseignement Technique) Librairie Delagrave. Paris: 1964
Caronnet, Th. Éxércices de Géométrie -quatrième livre: Les Aires 4. éd.,Librairie Vuibert. Paris:1947

21.8.17

Dividir um quadrilátero em duas partes equivalentes por uma reta a passar por um vértice

Determinar a reta que passa por um dos vértices de um quadrilátero e o divide em dois polígonos equivalentes
Dividir um quadrilátero em duas partes equivalentes por uma reta a passar por um vértice

Apresentamos a seguir uma construção dinâmica a ilustrar que para qualquer quadrilátero há uma reta a passar por um vértice que o divide em dois polígonos equivalentes

O enunciado do problema desta entrada é:
Dado um quadrilátero $\;ABCD\;$ determinar uma reta a passar, por exemplo, por $\;D,\;$ que divide $\;ABCD\;$ em duas partes iguais em área.

Pode seguir os passos da nossa construção e notas de demonstração usando a barra de navegação para passos da construção ao fundo do rectângulo de visualização
  1. Apresenta-se inicialmente um quadrilátero $\;ABCD.\;$
    • Sabemos que, das retas tiradas por $\;D,\;$ a diagonal $\;DB\;$ divide o quadrilátero $\;ABCD\;$ em duas partes.
      Quando $\;ABD\;$ é equivalente a $\;BCD\;$ o segmento de reta que procuramos é $\;BD\;$
    • Quando a área de $\;ABD\;$ é maior que a área de $\;BCD,\;$ a reta que procuramos há-de cortar o segmento $\;AB.\;$ Designemos por $\;E\;$ o ponto de $\;AB\;$ para o qual $\;DE\;$ divide em duas partes equivalentes o quadrilátero $\;[ABCD]= [AED] \cup [BCDE]\; \;\; \wedge \mbox{Área de }\;\;[AED] = \mbox{Área de }\;\;[BCDE] \; $
      Como determinamos $\;E $?
    • Quando a área de $\;ABD\;$ é menor que a área de $\;BCD,\;$ o segmento da reta que procuramos há-de ter para segundo extremo um ponto $\;F\;$ de $\;BC.\;$ para o qual $\;DF\;$ divide em duas partes equivalentes o quadrilátero $\;[ABCD]= [ABFD] \cup [FCD]\; \;\; \wedge \mbox{Área de }\;\;[ABFD] = \mbox{Área de }\;\;[FCD] \; $
      Como determinamos $\;F$?
  2. 21 agosto 2017, Criado com GeoGebra

  3. O quadrilátero $\;ABCD\;$ com os vértices nas posições apresentadas inicialmente é tal que $\;\mbox{Área de}\;\;[ABD] > \mbox{Área de}\;\;[BCD]\;$ e é, por isso, necessário cortar alguma parte ao $\;[ABD].\;$ E, de acordo com o enunciado, $\;D\;$ deve ser um extremo do segmento de reta que corta $\;ABD\;$ e divide o quadrilátero em duas partes iguais. Se chamarmos $\;E\;$ ao outro extremo do segmento, terá de ser $\;[AED]\;$ equivalente a $\;[BCDE].\;$
    Como se vê na figura, tomámos as seguintes retas $\;AB,\;DB,\;$ uma paralela a $\;DB\;$ tirada por $\;C\;$ que interseta $\;AB\;$ em $\;C’\;$ e finalmente a reta $\;DC’.\;$
    Como é óbvio, os triângulos $\;DBC\;$ e $DBC’$ têm uma base $\;DB\;$ comum e os vértices $\,C, \;C’\;$ opostos a $\;DB\;$ sobre uma paralela a ela. São, por isso, iguais em área. Assim, $$\mbox{Área de}\;\;[DEBC] =\mbox{Área de}\;\;[DEB]+ \mbox{Área de}\;\;[BCD]= \mbox{Área de}\;\;[DEB]+ \mbox{Área de}\;\;[BC’D] =\mbox{Área de}\;\;[DEC’].$$ Como $\;DE\;$ deve ser tal que $$\;\mbox{Área de}\;\;[DEBC] = \;\mbox{Área de}\;\;[AED],\;$$ pelo que vimos há pouco $$\;\mbox{Área de}\;\;[DEBC]=\;\mbox{Área de}\;\;[DEC’]$$ e, em consequência, $$\;\mbox{Área de}\;\;[AED]=\mbox{Área de}\;\;[DEC’]\;$$ o que, para ser verdade, como a distância de $\;D\;$ a $\;AB\;$ é a altura comum aos dois triângulos de bases $\;AE, \; EC’\;$ que têm de ser equivalentes, então $\;E\;$ tem de ser o ponto médio de $\;AC’.\;$ Ficamos a saber os passos do processo de determinação de $\;E\;$ que com $\;D\;$ define a reta que corta o quadrilátero em duas partes equivalentes.
  4. No passo 3, precisamos que o leitor desloque, por exemplo $\;C,\;$ para uma posição tal que $\;\mbox{Área de }\;\;[ABD] < \mbox{Área de }\;\;[ABD] \;$ em que teremos de procurar/apresentar um ponto $\;F\;$ de $\;BC\;$ tal que $\;DF\;$ divide o quadrilátero $\;ABCD\;$ em duas partes equivalentes. O processo é inteiramente análogo ao anterior.


Cluzel, R.; Robert, J-P. La Géometrie et ses applications. (Enseignement Technique) Librairie Delagrave. Paris: 1964
Caronnet, Th. Éxércices de Géométrie -quatrième livre: Les Aires 4. éd.,Librairie Vuibert. Paris:1947