7.5.13

Relações no conjunto quadrangular e relativamente ao quadrângulo associado

Durante o estudo das generalizações dos Teoremas de Ceva e Menelau, e já antes com o o Teorema de Armin Saam, tropeçámos com o que aconteceria quando tivéssemos um número de par de retas cortados por retas de um feixe ou por uma reta. Logo seguir ao triângulo, é o quadrilátero completo que nos surge, já estudado em diversas entradas.
Particularmente estudámos as secções por uma reta
- conjunto quadrangular geral (pontual de seis pontos) quando se trata da secção dos seis lados do quadrilátero completo por uma reta que não passa por qualquer dos vértices nem por qualquer dos pontos diagonais do quadrilátero completo;
- quaterno harmónico obtido pela secção de uma reta que não passa por qualquer dos vértices mas por dois pontos diagonais.
Na construção que se segue, temos
  1. - os quatro pontos distintos (vértices de um quadrilátero) $A_1$, $A_2$, $A_3$, $A_4$ dos quais não há 3 colineares.
  2. - uma reta $r$ distinta das retas definidas pelos 4 pares de pontos anteriores: os lados definidos por vértices consecutivos $A_1 A_2$, $A_2 A_3$, $A_3 A_4$, $A_4 A_1$ e as diagonais definidas por pares de vértices opostos $A_1 A_3$, $A_2 A_4$
  3. - os quatro pontos $\{B_1\} = A_1 A_2.r$, $\{B_2\} = A_2 A_3.r$, $\{B_3\} = A_3 A_4 . r$, $\{B_4\}= A_4 A_1 . r$ e ainda $\{B'_3\}= A_1 A_3 . r$ e $\{E\} = A_2 A_4 . r$

A primeira parte da construção serve para verificar que $$\frac{A_1 B_1}{B_1 A_2} \times \frac{A_2 B_2}{B_2 A_3} \times \frac{A_3 B_3}{B_3 A_4} \times \frac{A_4 B_4}{B_4 A_1}= 1$$ que se obtém aplicando o Teorema de Menelau aos triângulos $A_1 A_2 A_3$ e $A_1 A_2 A_4$ cortados por $r$ que não passa por qualquer dos seus vértices. Este resultado verifica-se certamente para todos os casos de polígonos com um número par de lados (ver a sugestão do que acontece com um número ímpar de lados - o polígono com $n$ lados é dividido em $n-2$ triângulos e $(-1)^{n-2}$ é $-1$ quando $n$ é ímpar e $1$ quando $n$ é par).


Por favor habilite Java para uma construção interativa (com Cinderella).

Logo após a construção são apresentados os cálculos para ilustrar uma relação que 6 pontos colineares devem satisfazer para que formem um conjunto quadrangular.
No caso a nossa construção, o conjunto $\{ E, B_1, B_3, B'_3, B_2, B_4\} $ verifica a seguinte relação; sendo $E\neq B_3$, $$EB_1 \times B_3 B_2 \times B_4 B'_3 = EB_2 \times B_3 B'_3 \times B_4 B_1$$ (que pode ser esta ou outra similar.)

A perspetividade de centro em $A_1$ seguida da perspetividade centrada em $A_3$ $$(E B_4 B_1 B'_3) \rightarrow ^{A_1} (E A_4 A_2 O) \rightarrow ^{A_3} (E B_3 B_2 B'_3)$$ garantem que são iguais as razões duplas $(E, B_4; B_1, B'_3)$ e $(E, B_3; B_2, B'_3)$. Por ser $$(E, B_4; B_1, B'_3) = \frac{EB_1}{EB'_3} \div \frac{B_4 B_1}{B_4 B'_3}= \frac{EB_1 \times B_4 B'_3}{EB'_3 \times B_4 B_1} $$ e $$(E, B_3; B_2, B'_3) = \frac{EB_2}{EB'_3} \div \frac{B_3 B_2}{B_3 B'_3}= \frac{EB_2 \times B_3 B'_3}{EB'_3 \times B_3 B_2} $$ resulta $$\frac{EB_1 \times B_4 B'_3}{EB'_3 \times B_4 B_1} = \frac{EB_2 \times B_3 B'_3}{EB'_3 \times B_3 B_2}.$$ Finalmente
cortando $EB'_3$ que aparece nos dois denominadores e multiplicando ambos os membros por $B_4 B_1 \times B_3 B_2$, obtemos $$EB_1 \times B_3 B_2 \times B_4 B'_3 = EB_2 \times B_3 B'_3 \times B_4 B_1, $$ como queríamos.
Seguindo
Richter-Gebert. Perspectives on Projective Geometry - A guided tour through real and complex geometry. Springer-Verlag. Berlin: 2011

3.5.13

Generalização do Teorema de Menelau

O Teorema de Menelau pode ser generalizado de modo análogo ao que foi feito com o Teorema de Ceva. Destaquemos então o essencial do Teorema de Menelau para os triângulo, usando índices.
São dados:
  1. Três pontos distintos (vértices de um triângulo) $A_1$, $A_2$, $A_3$ não colineares.
  2. Uma reta $r$ distinta das retas definidas pelos 3 pares de pontos anteriores: $A_1 A_2$, $A_2 A_3$, $A_3 A_1$
  3. Os três pontos $\{B_1\} = A_1 A_2.r$, $\{B_2\} = A_2 A_3.r$, $\{B_3\} = A_3 A_1 . r$


Por favor habilite Java para uma construção interativa (com Cinderella).

Se estas condições se verificarem, resulta que $$\frac{A_1 B_1}{B_1 A_2}\times \frac{A_2 B_2}{B_2 A_3} \times \frac{A_3 B_3}{B_3 A_1} = -1$$ Tal foi demonstrado recentemente.
Com o objetivo de generalizar o Teorema de Menelau, apresentamos uma construção que ilustra o processo.
  1. Consideramos cinco pontos $\{ A_i\}_{i=1, \ldots, 5}$ e as cinco retas ${A_i A_{i+1}}_{i=1, \ldots, 5}$, considerando como já o fizemos antes ($A_6 = A_1$, por ser $6=\dot{5}+1$
  2. Consideramos uma reta $r$ distinta de cada uma das retas $A_i A_{i+1}$ e os cinco pontos obtidos como secção por r dos lados do pentágono, a saber: ${B_i} =r. A_i A_{i+1}, i=1, \ldots, 5$

Verificadas estas condições, resultará que $$\frac{A_1 B_1}{B_1 A_2}\times \frac{A_2 B_2}{B_2 A_3} \times \frac{A_3 B_3}{B_3 A_4} \times \frac{A_4 B_4}{B_4 A_5}\times \frac{A_5 B_5}{B_5 A_1}= -1$$


Por favor habilite Java para uma construção interativa (com Cinderella).
A construção acima apresenta o essencial da nossa demonstração.
O petágono de vértices $A_1, A_2, A_3, A_4, A_5$ pode ser decomposto em três triângulos. No caso da nossa construção, tomámos os triângulos orientados $A_1 A_2, A_3$, $A_1 A_3 A_4$ e $A_1 A_4 A_5$ e os pontos ${B'_3} = r. A_1 A_3$ e ${B'_4} = r. A_1 A_4$.
Aplicando o Teorema de Menelau a cada um destes triângulos de lados cortados por $r$, obtêm-se as seguintes igualdades: $$\frac{A_1 B_1}{B_1 A_2}\times \frac{A_2 B_2}{B_2 A_3} \times \frac{A_3 B'_3}{B'_3 A_1}=-1 \hspace{.5cm} \frac{A_1 B'_3}{B'_3 A_3} \times \frac{A_3 B_3}{B_3 A_4}\times \frac{A_4 B'_4}{B'_4 A_1}=-1 \hspace{.5cm} \frac{A_1 B'_4}{B'_4 A_4}\times\frac{A_4 B_4}{B_4 A_5}\times \frac{A_5 B_5}{B_5 A_1}= -1$$ cujo produto $$\frac{A_1 B_1}{B_1 A_2}\times \frac{A_2 B_2}{B_2 A_3} \times \frac{A_3 B'_3}{B'_3 A_1}\times \frac{A_1 B'_3}{B'_3 A_3} \times \frac{A_3 B_3}{B_3 A_4}\times \frac{A_4 B'_4}{B'_4 A_1} \times \frac{A_1 B'_4}{B'_4 A_4}\times\frac{A_4 B_4}{B_4 A_5}\times \frac{A_5 B_5}{B_5 A_1}= (-1)^3 =-1$$ donde podemos concluir que $$\frac{A_1 B_1}{B_1 A_2}\times \frac{A_2 B_2}{B_2 A_3} \times \frac{A_3 B_3}{B_3 A_4}\times\frac{A_4 B_4}{B_4 A_5}\times \frac{A_5 B_5}{B_5 A_1}=-1$$ já que $$\frac{A_3 B'_3}{B'_3 A_1}\times \frac{A_1 B'_3}{B'_3 A_3}\times \frac{A_4 B'_4}{B'_4 A_1} \times \frac{A_1 B'_4}{B'_4 A_4}=1 $$ obviamente.

O Teorema de Menenaus generalizado pode agora ser enunciado: Sendo $n$ ímpar, se $A_1, A_2, \ldots A_n $ $n$ pontos não colineares 3 a 3 e ${B_i}=r. A_i A_{i+1}$ índices módulo $n$ e ${B_i} = r.A_i A_{i+1}$, então $$\Pi_{i=1}^n \frac{A_i B_i}{B_i A_{i+1}}=-1 $$ A demonstração segue o processo usado para n=5.
Seguindo
Richter-Gebert. Perspectives on Projective Geometry - A guided tour through real and complex geometry. Springer-Verlag. Berlin: 2011