30.9.09

As alturas e as mediatrizes concorrentes

As alturas de um triângulo satisfazem a condição de Ceva suficiente para serem concorrentes


[AdAM]


Demonstração:
Seja o triângulo ABC e as suas alturas AD, BE e CF. Os triângulos em que as alturas dividem o triângulo são semelhantes dois a dois. Por exemplo, o triângulo ABE é semelhante ao triângulo ACF, porque são ambos rectângulos e têm o ângulo A em comum. E, em consequência, AF/EA=CF/BE (=AC/AB).
De modo análogo, se deduz que , CE/DC=BE/AD(=BC/AC), CF/AD=BF/BD(=BC/AB)
Assim, (AF/AE).(CE/DC).(CF/AD)=(CF/BE).(BE/AD).(BF/BD) e

(AF/FB) .(BD/DC).(CE/AE)=1.






Concorrentes são também as mediatrizes de um triângulo, já que contêm alturas de outro triângulo.

As mediatrizes dos lados do triângulo ABC contêm as alturas do triângulo DEF (sendo D, E e F os pontos médios de BC, AC e AB respectivamente). A construção dinâmica que se segue ilustra isso mesmo.


[AdAM]



Nota: ver: as alturas de um triângulos são mediatrizes de outro

27.9.09

As bissectrizes de um triângulo e o Teorema de Ceva

Num triângulo ABC, a bissectriz de um ângulo - A, por exemplo-, corta o lado BC (oposto ao ângulo A) em dois segmentos BD e DC tais que BD/AB=CD/AC.

Para demonstrar este resultado, basta tirar por B uma paralela a AD que intersecta AC num ponto H. Nesta figura, é imediato reconhecer que ACD é semelhante ao triângulo AHB; o ângulo C é comum e oposto a AD e BH paralelos que são lados dos pares de ângulos correspondentes CAD e CHB, CDA e CBH. Por isso, CA/CH=CD/CB=DB/AH. Mas por AD ser uma bissectriz do ângulo CAB, CAD=DAB e CHB=CAD=ABH, o triângulo BAH é isósceles e AB=AH.
Assim é verdade que BD/AB=CD/CA.





[AdAM]

Usando este resultado e o Teorema de Ceva, fácil é provar que

As bissectrizes de um triângulo qualquer são concorrentes

Tomemos agora o triângulo ABC e as bissectrizes dos seus ângulos A, B e C que cortam os lados opostos BC, AC e AB nos pontos D, E e F (pés das bissectizes?).
Vejamos se as nossas cevianas bissectrizes satisfazem a condição suficiente do Teorema de Ceva para serem concorrentes.

Vimos ainda agora que CD/AC=DB/AB e, de modo análogo, teríamos visto que AE/AB=EC/BC e AF/AC=FB/BC.
Em consequência,
(CD/AC)*(AE/AB)*(AF/AC)=(DB/AB)*(EC/BC)*(FB/BC) ou (CD/DB)*(AE/EC)*(AF/FB)=(AC/AB)*(AB/BC)*(AC/BC) que é o mesmo que (CD/DB)*(AE/EC)*(AF/FB)=1, isto é, as bissectrizes satisfazem a condição suficiente para serem concorrentes.