Mostrar mensagens com a etiqueta teorema. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta teorema. Mostrar todas as mensagens

31.3.18

Pontos médios dos lados, pés das alturas, equidistantes do ortocentro e de ponto da circunscrita do triângulo são co-cíclicos.



TEOREMA:[Círculo dos nove pontos.]

Num triângulo, os pontos médios dos lados, os pés das alturas e os pontos médios dos segmentos de reta que ligam os vértices ao ortocentro são pontos de uma mesma circunferência (são concíclicos)


F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, (http://gallica.fr)-
Théorème 27. Cercle de» neuf point. Dans un triangle, les milieux des côtés, les pieds des hauteurs et les milieux des droites qui joignent les sommets au point de concours des hauteurs, sont situés sur une même circonférence.

Para acompanhar os passos, desloque o cursor |n=1,…, 4| na esquerda alta da janela de construção.

  1. São dados o triângulo $\;[ABC],\;$ de lados $\;a = [BC], \;$ $b=[CA], \;$ e $\;c=[AB] \;$ os pontos $\;M_a, \;M_b, \; M_c\;$ médios dos seus lados e a circunferência única que passa por esses três pontos médios, não colineares.
  2. Mostramos as alturas $\;AH_a, \; BH_b, \;CH_c.\;$ Precisamos de provar que os pés das perpendiculares $\;H_a, H_b, \;H_c\;$ tiradas de cada vértice para o lado oposto são pontos da mesma circunferência $\;(M_aM_bM_c).\;$
    A nossa descrição para este passo da demonstração apoia-se na figura em que $\;A\;$ está para a esquerda de $\;M_a\;$


  3. 31 março 2018, Criado com GeoGebra

    Provar que um dos pés, por exemplo, $\; H_a,\;$ é um ponto daquela circunferência, pode reduzir-se a provar que o quadrilátero $\;[H_aM_aM_bM_c]\;$ é inscritível em $\;(M_aM_bM_c),\;$ ou seja, provar que $$\; \angle M_a\widehat{M_b}M_c +\angle M_c\widehat{H_a}M_a = 1\;\; \mbox{raso}$$

    $\;ACBH_a\;$ é um triângulo retângulo em $\;H_a\;$ e $\;M_c\;$ é o ponto médio da sua hipotenusa $\;AB\;$ o que implica que $\;AM_cH_a\;$ é um triângulo isósceles de base $\;AH_a\;$ e $\;M_cA= M_cB =M_cH_a = M_aM_b\;$ já que $\;M_aM_b\;$ e $\;M_cB\;$ são segmentos paralelos entre paralelas ($\;M_bM_c \parallel BC\;$).
    Podemos assim concluir que o quadrilátero $\; [H_aM_aM_bM_c]\;$ é um trapézio isósceles, portanto inscritível e, assim, o quarto vértice $\;H_a\;$ estará obrigatoriamente na única circunferência que passa pelos outros três.
    Para um dos outros pés das alturas restantes, o mesmo raciocínio dará a prova.

  4. Mostra-se o ponto $\;H\;$ comum às alturas e os pontos $\;E_A, \;E_B, \;E_C\;$ equidistantes de $\;H\;$ e de $\;A, \;B, \;C\;$ respetivamente. que também pertencem a $\;(M_aM_bM_c),\;$ o que é preciso provar.

    A nossa descrição para este passo da demonstração apoia-se na figura em que $\;A\;$ está para a direita de $\;M_a\;$

    O segmento de reta $\;M_cE_A\;$ une pontos médios dos lados $\;AB\;$ e $\;AH\;$ do triângulo $\;[ABH]\; $e, por isso, $\;M_cE_A \parallel BH.\;$ Como $\;M_cM_a\;$ une pontos médios dos lados $\;AB\;$ e $\;BC, \;$, é $\;M_cM_a \parallel CA.\;$ Como $\;BH\;$ é um segmento da altura perpendicular a $\;CA\;$ é também perpendicular a $\;M_cM_a.\;$ Concluindo: $$\;(BH \parallel M_cE_A \wedge M_cM_a \perp CH) \Longrightarrow M_cM_a \perp M_cE_A$$ $$ \angle E_A\widehat{M_c}M_a= \angle B\widehat{H_a}A = 1\;\; \mbox{reto}$$ sendo estes ângulos opostos e de soma rasa no quadrilátero $\;[M_aH_aE_AM_c]\;$ e, por isso, $\;E_A\;$ é um ponto da circunferência $\;(M_aH_aMc)\;$ que tínhamos visto que era a mesma que $\;(M_aM_bM_c)\;$.
    O mesmo raciocínio se usa para provar que $\;E_B, \;E_C\;$ são pontos da mesma circunferência. $\;\;\;\;\;\blacksquare$



  5. Apresentamos aqui um ponto $\;P\;$ da circunferência $\;(ABC)\;$ circunscrita ao triângulo $\;[ABC]\;$ e o ponto $\;F\;$ médio do segmento $\;[HP].\;$ Deslocando o ponto $\;P\;$ sobre $\;(ABC)\;$ verá que o ponto $\;F\;$ (de Feuerbach, assim falamos dele) percorre a circunferência dos nove pontos $\; (M_aM_bM_cH_aH_bH_cE_AE_BE_C)\;$ e que estes nove pontos têm a propriedade comum de serem pontos - $\;F\;$ - equidistantes do ortocentro e de um ponto da circunferência circunscrita do triângulo $\;[ABC],\;$ havendo para além deles uma infinidade de pontos com essa propriedade.

E lembramos a nossa primeira publicação desse resultado.
Circunferência dos 9 pontos de um triângulo como lugar geométrico dos pontos médios dos segmentos com extremos no ortocentro e em ponto livre na circunferência circunscrita (Paul Yu )

30.1.18

Triângulo isósceles: invariância da soma das distâncias do lados iguais a pontos da base.



TEOREMA: Se por um ponto qualquer $\;D,\;$ da base $\;BC\;$ de um triângulo $\;ABC\;$ isósceles, tirarmos perpendiculares $\;DE, \; DF\;$ respetivamente aos lados $\;AC\;$ e $\;AB\;$ iguais, então a soma $\;DE+DF\;$ é sempre a mesma qualquer que seja a posição de $\;D.\;.$
PROBLEMA: Provar que é invariante a soma das distâncias $\;DE+DF\;$ de um ponto qualquer $\;D\;$ de $\;BC\;$ aos lados $\;AC\;$ e $\;AB\;$ .


F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, - Problème 20. 20. La somme des perpendiculaires abaissées d'un point quelconque de la base d'un triangle isocèle sur les côtés égaux, quelconque est une quantité constante.

Todos os passos da construção e demonstração em tudo são análogos aos usados na anterior entrada

$\;\fbox{n=1}:\;$ Apresenta-se um triângulo isósceles $\;ABC\;$ de base $\;BC\;$ e sobre esta um ponto $\;D\;$ que pode tomar a posição de qualquer dos seus pontos. E mostram-se também os pontos $\;E, \;F\;$ pés das perpendiculares a $\;AC,\; AB\;$ por $\;D\;$ tiradas.Também se mostram os segmentos (distâncias do problema) das perpendiculares $\;[DE],\; [DF]$

$\;\fbox{n=2}:\;$ Para verificar a invariância da soma, bastará prolongar uma das perpendiculares, no caso da nossa construção prolongamos o segmento $\;[DF]\;$ acrescentando $\;[DN],\;$ em que $\;N\;$ é ponto de intersecção da recta $\;DF\;$ com uma paralela a $\;AC\;$ tirada por $\;C\;$ (ou o que é o mesmo com uma perpendiculara a $\;DF\;$ tirada por $\;C.$)
Ficamos assim com três triângulos retângulos semelhantes $\;DBF, \;CDN, \;DCE:\;$
  • $\; \angle F\hat{B}D = \angle D\hat{C}E\;$ ângulos da base do triângulo $\;ABC\;$ isósceles;
  • $\; \angle D\hat{F}B = \angle C\hat{E}D= 1\;$ reto, por construção (dados da hipótese);
  • e, em consequência, $\; \angle B\hat{D}F= \angle E\hat{D}C\;$;
  • $\;\angle N\hat{C}D= \angle F\hat{B}D \;$ por terem os lados inversamente paralelos;
  • e finalmente $\; \angle B\hat{D}F = \angle C\hat{D}N \;$ são iguais por serem verticalmente opostos.
  • Podemos agora afirmar que, mais do que semelhantes, são iguais os triângulos $\;CED, \;CDN\;$ por terem os três ângulos iguais e a hipotenusa $\;CD\;$ comum.
  • Por isso, $\;DE = DN\;$ e $\;FD+DN= FD+DE = FN\;$ que os valores referidos nos textos abaixo da construção sugerem que os diversos valores de $\;DE\;$ e $\;DF\;$ quando $\;D\;$ se desloca sobre a base $\;BC\;$ têm uma soma constante.




31 janeiro 2018, Criado com GeoGebra



$\;\fbox{n=3}:\;$ Apresenta-se neste passo o segmento $\;[CL]\;$ da paralela a $\;FN\;$ tirada por $\;C\;$ (ou da perpendicular a $\;AB\;$ tirada por $\;C\;$ que é uma das duas alturas iguais do triângulo $\;ABC\;$ tiradas pelos vértices opostos $\;C\;$ e $\;B\;$ opostos aos lados iguais $\;AB\;$ e $\;AC,\;$ que não sofre qualquer variação quando $\;D\;$ muda de posição e tem comprimento igual a $\;\overline{FN},\;$ ou seja, à soma das duas distâncias dos lados iguais do triângulo isósceles a cada ponto da base. Fica assim demonstrado que essa soma é constante.


Quando $\;D\;$ se encontra em $\;C\;$o retângulo $\;CLFN\;$ tem área $\; CL\times FF\;$ nula. Quando $\;D\;$ se encontra em $\;B\;$o retângulo $\;CLFN\;$ tem área $\; CL\times LB\;$ máxima

Quanto ao perímetro, como uma das dimensões do retângulo é sempre a mesma, o perimetro é um mínimo $\;CL\;$ quando $\;D\;$ toma a posição de $\;C\;$ e é máximo $\;2(CL+LB)\;$ quando $\;D\;$ toma a posição de $\;B\;$

22.1.18

Paralelogramos inscritos num triângulo isósceles com um perímetro comum.



TEOREMA:Por um ponto qualquer $\;D,\;$ da base $\;BC\;$ de um triângulo $\;ABC\;$ isósceles, tiram-se paralelas aos lados iguais $\;AB, \;AC\,$ do triângulo que intersetam os lados $\;AC, \;AB \;$ em $\;E\;$ e em $\;F\;$ respetivamente. Para cada $\;D\;$ de $\;]BC[\;$ há um paralelogramo $\;[DEAF].\;$ Prova-se que os paralelogramos $\;[DEAF]:\;D \in ]BC[\;$ são isoperimétricos.
PROBLEMA: Provar que a soma dos comprimentos dos lados de todos os paralelogramos é invariante.


F.G.-M., Exércices de Géométrie…. 6ème éd., J. de Gigord. Paris:1920, - Problème 19. Par un point quelconque de la base d'un triangle isocèle on mène des parallèles aux côtés égaux; prouver qye le parallélogramme ainsi formé a un périmètre constant.

Considera-se que na resolução deste problema de demonstração se recorre ao método geral de análise já que se aceita que a afirmação é verdadeira, o que é o mesmo que supor ter o problema resolvido. Os primeiros três passos da construção abaixo dão toos os elementos para a demonstração do teorema.

$\;\fbox{n=1}:\;$ Apresenta-se um triângulo isósceles $\;ABC\;$ de base $\;BC\;$ e sobre esta um ponto $\;D\;$ que pode tomar a posição de qualquer dos seus pontos. E mostram-se também os pontos $\;E, \;F\;$ vértices do paralelogramo $\;DEAF\;$ conforme dados da hipótese do teorema.

$\;\fbox{n=2}:\;$ Claro que lados opostos do paralelogramo têm comprimento igual (segmentos paralelos entre paralelas são iguais) $\;AE=FD, \;AF=DE\;$ e, por isso, o perímetro de $\;DEAF\;$ é igual ao dobro da soma de dois dos seus lados consecutivos: $\;DE+EA+AF+FD= 2 (DE+FD). \;$ Se $\;DE+FD\;$ não depender da posição de $\;D\;$ em $\;BC\;$, o perímetro de $\;DEAF\;$ não varia quando a posição de $\;D\;$ varia. Desloque $\;D\;$ para confirmar isso (conjetura) - nos textos se vê como variam os comprimentos $\;DE\;$ e $\;FD\;$ tendo soma constante.

$\;\fbox{n=3}:\;$ Claro que ângulos de lados paralelos são iguais em amplitude, por exemplo, $\;\angle B\hat{A}C= \angle D\hat{E}C =\angle B\hat{E}D, \; $ $\angle B\hat{C}A= \angle D\hat{C}E = \angle B\hat{D}F\;$ e, como é óbvio, por ser $\;\angle A\hat{B}C = \angle B\hat{C}A\;$ do triângulo isósceles $\;ABC,\;$ os triângulos $\;BDF\;$ e $\;DCE,\;$ de onde se retira que $\;DE=EC\;$ ou seja $\;\overline{FD}+\overline{ED} = \overline{FD}+\overline{EC}=\overline{AE}+\overline{ED}\;$
Prolongando $\;FD\;$ e tirando por $C\;$ a paralela a $\;AB\;$ obtemos um paralelogramo $\;FGCA\;$ que para qualquer posição de $\;D\;$ (incluindo $\;B\;$ e $\;C\;$) $\;FD+DE =FG= AC\;$ que não depende da posição de $\;D\;$

22 janeiro 2018, Criado com GeoGebra




Aproveitamos a oportunidade para lembrar um OUTRO PROBLEMA (clássico), usando a mesma construção:
Dos paralelogramos $\;DEAF\;$ isoperimétricos, qual deles tem área máxima?
De outro modo, qual a posição de $\;D\;$ para a qual $\;DEAF\;$ tem área máxima?
Ou ainda, de entre os números com uma certa soma constante, quais deles têm um produto máximo?
$\;\fbox{n=4}:\;$ Mostra-se a área de $\;DEAF\;$ variável com $\;D\;$ como se pode ver.
$\;\fbox{n=5}:\;$ Quando a posição de $\;D\;$ varia em $\;BC\;$, a área de $\;DEAF\;$ como função de $\;BD\;$ é representada por uma curva que se mostra neste passo… □

27.2.15

Elementos: Teorema de Pitágoras.


Optamos por escolher alguns exemplos de enunciados e demonstrações de #"Os Elementos" para ilustrar o que Euclides tinha em mente quando usava a palavra igualdade associada à construção de conceitos diferentes. Temos andado a abordar resultados relacionados com áreas de figuras planas, apresentando resultados muito conhecidos (por enunciados atuais), mas transcritos do original para perceber como era ao tempo da génese das noções de geometria escrita.

TEOREMA DE PITÁGORAS
PROP. XLVII. TEOR.

Em todo o triângulo retângulo o quadrado feito sôbre o lado oposto ao ângulo reto, é igual aos quadrados formados sôbre os outros lados, que fazem o mesmo ângulo reto .


© geometrias. 28 de Fevereiro 2015, Criado com GeoGebra

Fazendo variar o valor de $\;n\;$ (no selector no centro ao fundo da janela de construção) verá o desenvolvimento da figura relativa à demonstração.

Seja o triângulo retângulo ABC, cujo ângulo reto seja BAC. Digo que o quadrado feito sôbre o lado BC é igual aos quadrados descritos sôbre os lados BA, AC, que formam o ângulo reto BAC.
Descreva-se sôbre BC o quadrado BDEC (Pr. 46.1.*), e sôbre BA, AC os quadrados GB, HC. Pelo ponto A tire-se AL, paralela (Pr. 31.1. **) a BD, ou CE, tirem-se também as retas AD, FC. Porque os ângulos BAC, BAG são retos (Def. 30. ***), as duas retas CA, AG estão em direitura uma com outra (Pr. 14.1. ****). O mesmo será a respeito das duas AB, AH. Os ângulos DBC, FBA, por serem retos, são iguais. Ajunte-se-lhes o mesmo ângulo ABC. Logo, o total DBA será igual ao total FBC (Ax. 2.*****). E sendo as duas AB, BD iguais às duas FB, BC, cada uma a cada uma, e o ângulo DBA = FBC, será o triângulo ABD = FBC outro triângulo (Pr. 4.1.******). Mas o paralelogramo BL é o dôbro (Pr. 41.1.*******) do triângulo ABD, porque está sôbre a mesma base BD, e entre as mesmas paralelas BD, AL; e o quadrado GB é o dôbro do triângulo FBC, porque tem a base comum FB, e estão q as mesmas paralelas FB, GC. Logo, sendo iguais os dobros de quantidades iguais (Ax. 6.********), deve ser o paralelogramo BL igual ao quadrado GB. Do mesmo modo, tiradas as retas AE, BK, se demonstra, que o paralelogramo CL é igual ao quadrado HC. Logo, o quadrado inteiro BDEC, feito sôbre o lado BC oposto ao ângulo reto BAC, é igual aos dois quadrados GB, HC formados sôbre os lados BA, AC, que fazem o mesmo ângulo reto BAC. □

*PROP XLVI.PROB.
Sôbre uma linha reta dada descrever um quadrado
**PROP. XXXI. PROB.
De um ponto dado conduzir uma linha reta paralela a outra linha reta dada
*** DEFINIÇÃO XXX.
Entre as figuras quadriláteras, o quadrado é o que é juntamente equilátero e retângulo
**** PROP.XIV. TEOR.
Se em um ponto de uma linha reta qualquer concorrerem de partes opostas duas retas, fazendo com a primeira reta os ângulos adjacentes iguais a dois retos, as retas, que concorrem para o dito ponto, estarão em direitura uma da outra.
***** AXIOMA II
Se a cousas iguais se juntarem outras iguais, os todos serão iguais.
****** PROP. IV. TEOREMA.
Se dois triângulos tiverem dois lados iguais a dois lados, cada um a cada um, e os ângulos, compreendidos por êstes lados, forem também iguais; as bases e os triângulos, e os mais ângulos, que são opostos a lados iguais, serão também iguais.
*******PROP. XLI. TEOR.
Se um paralelogramo e um triângulo estiverem sobre a mesma base, e enre as mesmas paralelas, o paralelogramo será o dobro do triângulo.
********AXIOMA VI
As quantidades, das quais cada uma por si faz o dôbro de outra quantidade, são iguais.

Nota: Dedicadas ao Teorema de Pitágoras, há mais 50 entradas com diferentes enunciados, construções, demonstrações, aplicações, ... publicadas neste Lugar Geométrico.
  1. Euclides. Elementos de Geometria dos seis primeiros livros do undécimo e duodécimo da versão latina de Frederico Commandino , Adicionados e Ilustrados por ROBERTO SIMSON, Prof de Matemática na Academia de Glasgow. Revistos para Edições Cultura por ANÍBAL FARO. Edições Cultura. São Paulo (BR): 1944
  2. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2000