Mostrar mensagens com a etiqueta problema contrário. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta problema contrário. Mostrar todas as mensagens

28.7.14

Resolver problema de construção usando os métodos do problema contrário e transformação (4)


Problema: Inscrever num retângulo $\;[ABCD],\;$ um paralelogramo semelhante a outro $\;[EFGH]\;$ dado.
Vilela, António Lôbo. Métodos Geométricos. Editorial Inquérito, Lda. Lisboa:1939
O problema proposto consiste em construir um paralelogramo $\;[E_1F_1G_1H_1]\;$ semelhante a $\;[EFGH]\;$, inscrito no retângulo $\;[ABCD]\;$ dado: $\;E_1 \in AB, \;F_1\in BC, \;G_1 \in CD, \;H_1 \in DA.\;$
Para resolver o problema proposto, começamos por construir um retângulo semelhante a $\;[ABCD]\;$ circunscrito a $\;[EFGH]\;]$ ou cujos lados passem pelos vértices $\;E,\;F, \;G,\;H\;$ do paralelogramo.
Os passos da construção podem ser vistos, fazendo variar os valores $\;n\;$ no cursor $\; \fbox{n=1, 2, …, 6}$
  1. Na nossa construção, apresentamos como dados um retângulo $\;[ABCD]\;$ e um paralelogramo $\;[EFGH]\;$. Para além disso, apresentamos as diagonais do retângulo $\; AC, \;BD\;$ e o ângulo $\; \alpha\;$ por elas formado. De igual modo, se mostram as diagonais $\;EG, \;FH\;$ do paralelogramo e o ângulo $\;\beta\;$ por elas formado.
    Estes dados são relevantes para qualquer resolução do problema, pois "a condição necessária e suficiente para que dois paralelogramos sejam semelhantes é que sejam iguais os ângulos formados pelas respetivas diagonais".
  2. Começamos por construir um retângulo semelhante a $\;[ABCD]\;$ circunscrito ao paralelogramo $\;[EFGH],\;$ ou seja, um retângulo com cada um dos seus lados a passar por um dos vértices do paralelogramo e com as diagonais a fazer ângulo igual ao das retas $\;(AC, \; BD) =137.48^o,\;$ na ilustração.
    • $\fbox{n=2}:\;$ O centro do paralelogramo é o centro do retângulo a ele circunscrito, no caso $\;I.\;$. Para obter uma reta que seja diagonal de um retângulo centrado em $\;I\;$ semelhante a $\;[ABCD]\;$, bastará encontrar um outro ponto da diagonal para além do $\;I\;$, por exemplo, o ponto de interseção imagem da reta de um dos lados, p.e. $\;HE\;$, pela rotação $\;{\cal{R}}(I, \; \alpha)\;$, com a reta do lado consecutivo $\;EF\;$ (Verifique.)
    • $\fbox{n=3}:\;$Para ser retângulo (lados consecutivos perpendiculares) cada um dos seus vértices terá de ser um ponto de circunferência com um dos lados do paralelogramo por diâmetro. No caso da nossa construção, encontramos o primeiro vértice do retângulo circunscrito intersetando a reta obtida como reta diagonal com a circunferência de diâmetro $\;FG\;$. Os lados desse retângulo, a passar por $\;E, \;F, …\;$ são obtidos facilmente.
  3. © geometrias, 27 de Julho de 2014, Criado com GeoGebra


  4. O retângulo obtido é semelhante a $\;[ABCD]\;$, o que significa há uma transformação de semelhança a relacioná-los.
    $\fbox{n=4}:\;$ No caso da nossa construção, escolhemos o vértice $\;R,\;$ por ele tirámos uma paralela a $\;AB\;$ e aplicámos-lhe que a rotação $\;{\cal{R}}(R, \zeta)\;$, de modo a obter pares de lados paralelos a pares de lados paralelos de $\;[ABCD]\;$
    Obtivemos um novo paralelogramo inscrito no novo retângulo ao aplicar-lhe a mesma rotação $\;{\cal{R}}(R, \zeta)\;$, que preserva as incidências, os comprimentos, as amplitudes
  5. $\fbox{n=5}:\;$ Finalmente a este novo retângulo do qual os pontos $\;R, \;S\;$ são vértices, aplicamos a homotetia de centro em $\;CR.DS\;$ e razão $\; \displaystyle \frac{CD}{RS}\;$ que transforma $\;C\;$ em $\;R\;$ e $\;D\;$ em $\;S\;$
  6. $\fbox{n=6}:\;$Obviamente que, por essa homotetia, o paralelogramo laranja da figura que está inscrito no retângulo laranja (obtidos pela rotação $\;{\cal{R}}(R, \zeta)\;$ é transformado no paralelogramo $\;[E_1F_1G_1H_1]\;$ que, porque a homotetia preserva incidências, etc, é um paralelogramo inscrito em $\;[ABCD]\;$ semelhante a $\;[EFGH]\;$.
Claro que usámos transformações e podemos dizer, por isso, que usámos o método das transformações. O que é o mais natural é usarmos vários métodos para resolver qualquer problema. E, mesmo quando não o referimos, o mais natural é que face a um problema comecemos por usar a análise e acabemos a usar a síntese que são os raciocínios gerais em geometria, essenciais para resolver problemas de construção.

16.7.14

Resolver problema de construção usando o problema contrário (2)


Enquanto íamos resolvendo problemas de construção como ilustrações de métodos de demonstração de teoremas de existência na geometria euclidiana, a partir de referências várias (Birkhoff, Eves, Cluzel, Vissio, Puig Adam, etc) António Aurélio foi sempre referindo manuais escolares do seu tempo de escola. Mais recentemente, referia a existência de um título - Métodos Geométricos - e um autor A. Nicodemos. O livro (ou livros) de Nicodemos devem estar guardados na biblioteca da Escola José Estêvão. Mas depois de verificarmos a sua existência no catálogo da Biblioteca Nacional, procurámos, encontrámos e apalpámos dois dos livros das memórias de Aurélio, disponíveis na Biblioteca do Departamento de Matemática da FCT da Universidade de Coimbra, para o que contámos com a ajuda de Jaime Carvalho e Silva.
Um deles é o Compêndio de Geometria de A. Nicodemos, J. Calado, referido na vinheta anterior (de 13/07/2014). O outro resolve o problema do título em memória. Chama-se Métodos Geométricos - Resumo e exercícios resolvidos de António Lôbo Vilela, publicado em 1939, e depósito na Livraria Sá da Costa. Lisboa. Ficamos a saber que Antónoio Lôbo Vilela publicara, antes deste, um volume sobre Métodos da Matemática. Da nota prévia a este volume, retirámos:
"Com a publicação do nosso volume sobre Métodos de Matemática com o intuito de apontar a orientação que nos parece mais conveniente ao ensino da matemática, por ser a única que a pode tornar compreensiva e lhe permite exercer a sua ação educativa. Pretendemos ainda mostrar que a lógica devia ser integrada nos programas de matemática, separando-a da filosofia a que arbitrariamente anda ligada e a deixa murchar, por falta de aplicação e de seiva. A amplitude e o objectivo desse trabalho não nos permitiram descer a certas minúcias de aplicação da metodologia da matemática que têm particular valor didáctico. Por isso nos decidimos agora a publicar este pequeno volume de iniciação,limitando o assunto aos Métodos Geométricos, única parte da metodologia da matemática que os actuais programas exigem, e dando-lhe um cunho mais acentuadamente prático(…)"
Deste manual escolar de António Lôbo Vilela, a propósito do método do problema inverso, citamos
Assim, quando se pretende construir uma figura que satisfaça a certas condições, entre elas a de ser inscrita, por exemplo, numa figura dada, é possível, em geral, desprezando esta condição de inscritibilidade, construir uma figura que satisfaça às restantes condições. Se for mais simples circunscrever a esta figura a figura dada ou uma figura semelhante a ela, há conveniência em empregar o método do problema inverso.
e escolhemos o primeiro dos exemplos que ALV escolheu para ilustrar o recurso ao método do problema inverso:
Problema:
Inscrever, numa circunferência de raio dado, um triângulo isósceles cuja base seja igual à altura
  1. No caso é mais fácil resolver o problema contrário do problema proposto. Assim, começamos por desenhar um qualquer triângulo isósceles de altura igual à base e determinar a circunferência a ele circunscrita (que é o mesmo que dizer em que o triângulo está inscrito)
  2. Para isso, tomamos um segmento qualquer $\;DE\;$ para base do triângulo isósceles.
  3. Para ser isósceles, a reta da altura é a mediatriz da base $\;DE\;$ . Assim se determina o terceiro vértice do triângulos isósceles - circunferência de centro no ponto médio de $\;DE\;$ e raio $\;DE\;$ interseta a mediatriz em dois pontos, qualquer dos dois pode ser $\;F\;$
  4. O circuncentro $\;O\;$ de $\;[DEF]\;$ é o ponto de interseção das mediatrizes dos lados do triângulo e a circunferência a ele circunscrita tem centro $\;O\;$ e raio $\;OD\;$

  5. © geometrias, 16 de Julho de 2014, Criado com GeoGebra


  6. Esta circunferência de centro $\;O\;$ e a passar por $\;D,\;E,\;F\;$ é homotética de qualquer outra circunferência. Desenhemos a circunferência $\;(O,\;r)\;$
  7. Há uma homotetia de centro $\;O\;$ e razão $\;\displaystyle k=\frac{r}{OD}\;$ que relaciona as duas circunferências e para a qual
    $$\begin{matrix} &\;{\cal{H}}(O, k)\;&&\\ (O,\; OD) & \longrightarrow & (O, \; r)&\\ D & \longmapsto & A:& \;\;\;OA=r=k.OD\\ E & \longmapsto & B.& \;\;\;OB=r=k.OE\\ F & \longmapsto & C:& \;\;\;OC=r=k.OF\\ DE & \longrightarrow & AB :&\;\;\; AB=k.DE\\ EF & \longrightarrow & BC :&\;\;\; BC=k.EF\\ DF & \longrightarrow & AC : &\;\;\; AC=k.DF \\ \end{matrix} $$ de onde se conclui que, por ser $\;DEF\;$ um triângulo isósceles de base igual à altura a ela relativa, $\;ABC\;$ é um triângulo isósceles de base igual à altura a ela relativa inscrito na circunferência $\;(O, \;r)\;$ satisfazendo as condições do problema proposto.