Mostrar mensagens com a etiqueta Yaglom. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Yaglom. Mostrar todas as mensagens

6.6.14

Resolver problemas de construção, usando composta de translações (24)


Problema:     Em que pontos devem ser construídas as pontes perpendiculares aos rios de margens $\;a, \;b\;$ e $\;c,\;d\;$ paralelas que separam duas cidades $\;A, \;B\;$ de tal modo que se possa construir uma estrada entre elas o mais curta possível?

A construção a seguir ilustra essa resolução do problema recorrendo a transformações geométricas, no caso composta de translações. Utilizamos o problema resolvido anteriormente e ao apresentar esta resolução fica sugerido o processo para problema com qualquer número de rios
  1. Estão dados na figura os dois pontos $\;A,\;B\;$ - cidades, e as pares de retas paralelas $\;(a, \;b)\;$ e $\;((c, \;d)\;$ - margens dos rios que separam as duas cidades.


  2. © geometrias, 6 de Junho de 2014, Criado com GeoGebra


    Clique no botão "Resolução" que lhe dá todos os elementos a seguir dados pela ordem seguida.

  3. Temos de contar com as travessias dos dois rios: na direção perpendicular às margens $\;(a, \;b)\;$ e comprimento igual à distância entre elas - segundo $\;\overrightarrow{u}$, e na direção perpendicular às margens $\;(c, \;d)\;$ e comprimento igual à distância entre elas - segundo $\;\overrightarrow{v}\;$
  4. À semelhança do que fizemos na entrada anterior, aplicamos a $\;A\;$ a translação associada a $\;\overrightarrow{u}\;$ (travessia do primeiro rio), obtendo $\;L'= A+ \;\overrightarrow{u}\;$ que, no caso de um só obstáculo ligaríamos a $\;B\;$.
  5. No caso dos dois rios, acrescentamos a seguir à primeira travessia, a travessia do segundo rio, obtendo $\;N'=L'+ \;\overrightarrow{v} = A'+\;\overrightarrow{u} + \overrightarrow{v}\;$
    $N'\;$ é obtido pela composta da translação associada a $\;\overrightarrow{u}\;$ seguida da translação associada a $\;\overrightarrow{v}\;$
    A estrada mais curta entre $\;A\;$ e $\;B\;$ terá assim o comprimento $\;AL'+L'N' + N'B$
  6. O desenho da estrada será construído:
    • desenhe-se a reta $\;N'B\;$ que interseta $\;d\;$ em $\;N\;$
    • a perpendicular a $\;d\;$ tirada por $\;N\;$ interseta $\;c\;$ em $\;M\;$ (ou tome-se $\;M= N - \overrightarrow{v}\;$)
    • Tira-se por $\;M\;$ a reta paralela a $\;N'B\;$ (ou toma-se a reta $\;L'M\;$) que interseta a reta $\;b\;$ em $\;L\;$
      $\;[N'NML']\;$ é um paralelogramo: $\;L'N' \parallel MN$, $\;L'M \parallel N'N$, $\;L'N' = MN$, $\;L'M = N'N$
    • Toma-se agora $\;K= L-\overrightarrow{u}\;$ que está sobre $\;a\;$.
      Temos outro paralelogramo $\;[L'LKA]\;$: $\;AL' \parallel KL, \; L'L \parallel AK, \;AL' = KL, \; L'L = AK$
    • $AK \parallel L'M \parallel N'B, \;AL' \parallel KL \;$ e $\;L'N'\parallel MN$
      Como $\;AK=L'L$ e $\;L'M=L'L+LM= N'N\;$ então $\;AK+LM = M'N\;$ e $\;KL+MN=AL'+L'N' =u+v\;$ e o comprimento da estrada vermelha $$\;AK + KL + LM + MN + NB$$ é igual ao comprimento $$ (KL+MN) + (AK+LM)+NB = AL'+L'N'+N'N+NB= AL'+L'N'+N'B$$ do caminho mais curto.

4.6.14

Resolver problema de construção, usando transformações geométricas (23)


Problema:     Em que pontos deve ser construída a ponte perpendicular ao rio de margens $\;a, \;b\;$ paralelas que separa duas cidades $\;A, \;B\;$ de tal modo que se possa construir uma estrada entre elas o mais curta possível?

A construção a seguir ilustra essa resolução do problema recorrendo a transformações geométricas, no caso translações.
  1. Estão dados na figura os dois pontos $\;A,\;B\;$ - cidades, e as retas $\;a, \;b\;$ - margens do rio que separa


  2. © geometrias, 4 de Junho de 2014, Criado com GeoGebra



  3. Sem contar com o rio, o caminho mais curto entre as duas cidades, seria $\;AB\;$. Para determinar as posições dos pontos extremos da ponte é preciso considerar a mais o comprimento da travessia do rio.
  4. Tome-se um vetor $\;\overrightarrow{u}\;$ e aplique-se a $\;A\;$ a translação associada a esse vetor : $\;\overrightarrow{AA'} = \overrightarrow{u}\;$ ou $\;A'= A + \overrightarrow{u}$. Incluída a travessia, a estrada mais curta deve medir $\;AA' + A'B\;$
  5. A reta $\;AA'\;$ corta $\;b\;$ em $\;H\;$ e esse é um extremo da ponte. O outro será $\;H'= H - \overrightarrow{u}\;$ sobre $\;a\;$ e $\;AH'HA'\;$ é um paralelogramo.
    $\;AA'= HH'\;$ e $\;AH' = AH\;$. Logo $\;AA'+ A'B = AH'+H'H+HB$
E se houver dois rios a separar $\;A\;$ de $\;B\;$? Fica para a próxima entrada.