Mostrar mensagens com a etiqueta Livro I. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Livro I. Mostrar todas as mensagens

29.4.16

Construir um triângulo equivalente a um polígono


Na entrada anterior, resolvemos o problema repetindo a construção (I.44) tantas vezes quantos os triângulos em que dividamos o polígono dado.

No caso da nossa ilustração abaixo, temos um polígono $\;[ABCDEFG]\;$ e tomamos o segmento $\;JK\;$ para lado do paralelogramo equivalente a $\;[ABCDEFG]\;$ a construir. Em vez de tomarmos uma decomposição do polígono em triângulos e para cada um desses triângulos construir o paralelogramo equivalente, vamos previamente proceder à construção de um triângulo equivalente ao polígono $\;[ABCDEFG]\;$ e só depois construir o paralelogramo equivalente a esse triângulo.

©geometrias, 29 abril 2016, Criado com GeoGebra



Fazendo variar os valores de $\;\fbox{n}\;$ no cursor do fundo à direita, pode seguir os passos da resolução.


O processo de construção de um triângulo equivalente ao polígono $\;[ABCDEFG]\;$ é feito de repetições da determinação de um triângulo equivalente a um quadrilátero. Assim:

$\fbox{1,2}\;\;$

Escolhemos para começar o quadrilátero $\;[ABCD]\;$ e a sua diagonal $\;AC.\;$ Determinamos o ponto $\;P\;$ de intersecção de $\;CD\;$com a reta paralela a $\;AC\;$ tirada por $\;B.\;$ Os triângulos $\;[APC]\;$ e $\;[ABC]\;$ são iguais em área por terem uma base comum $\;AC\;$ e os terceiros vértices $\;B,\;P\;$ sobre $\;BP\;$ paralela a $\; AC\;$ comum.
Como $\;\mbox{Área}_{[ABCD]} = \mbox{Área}_{[ABC]} + \mbox{Área}_{[ACD]},\; \;\mbox{Área}_{[APD]}=\mbox{Área}_{[APC]} + \mbox{Área}_{[ACD]},\;$ podemos dizer que $\;\mbox{Área}_{[ABCD]}= \mbox{Área}_{[APD]},\;$ já que, como vimos, $\; \mbox{Área}_{[ABC]} = \mbox{Área}_{[APC]}.\;$

$\fbox{3,4}\;\;$

Tomamos de seguida $\;[APDE]\;$ e a diagonal $\;AD\;$ e determinamos $\;Q\;$ na intersecção de $\;DE\;$ com a paralela a $\;AD\;$ tirada por $\;P.\;$ E, como o anteriormente visto em procedimento análogo, são equivalentes os triângulos $\;[APD]\;$ e $\;[AQD].\;$
E, em consequência, $\; \mbox{Área}_{[APDE]} = \mbox{Área}_{[AQE]}, \;$ já que $\; \mbox{Área}_{[APDE]} =\mbox{Área}_{[APD]}+\mbox{Área}_{[ADE]} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\mbox{Área}_{[AQD]}+\mbox{Área}_{[ADE]}\;$

$\fbox{5,6}\;\;$

Com o mesmo raciocínio se toma agora $\;[AQEF],\;$, a sua diagonal $\;AE\;$ e determinamos o ponto $\;R\;$ de intersecção da reta $\;EF\;$ com a paralela a $\;AE\;$ tirada por $\;Q.\;$
E, como $\;\mbox{Área}_{[AQE]} = \mbox{Área}_{[ARF]}, \; \;\; \mbox{Área}_{[AQEF]} = \mbox{Área}_ {[ARF]}\;$.

$\fbox{7}\;\;$

Finalmente, para o nosso caso, consideremos o quadrilátero $\;[ARFG],\;$ a sua diagonal $\;AF\;$ e determinamos o ponto $\;S\;$ na intersecção de $\;EF\;$ com a paralela a $\;AF\;$ tirada por $\;G.\;$ (Podíamos ter optado por um ponto $\;S\;$ na intersecção de $\;GF\;$ com a paralela a $\;AF\;$ tirada por $\;R).\;$
E, como $\; \mbox{Área}_{AFS}=\mbox{Área}_{AFG}, \; \mbox{Área}_{ARFG}= \mbox{Área}_{ARF}+\mbox{Área}_{FGA} =\mbox{Área}_{ARF}+ \mbox{Área}_{FSA} = \mbox{Área} {ARS}.\;$ «
Finalmente podemos concluir que
$$\;\mbox{Área}_{[ABCDFG]} = \mbox{Área}_{[ARS]}\;$$ De facto, os passos da construção acompanham
$\displaystyle \mbox{Área}_{[ABCDEFG]} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\underbrace{\mbox{Área}_{[ABC]}+ \mbox{Área}_{[ACD]}}+ \mbox{Área}_{[ADE]} + \mbox{Área}_{[AEF]}+ \mbox{Área}_{[AFG]}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;\;\;\;\;\;\mbox{Área}_{[ABCD]} \;\;\;\;\;\;\;+ \mbox{Área}_{[ADE]} + \mbox{Área}_{[AEF]}+ \mbox{Área}_{[AFG]}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;\;\;\;\;\;\underbrace{\mbox{Área}_{[APD]}\;\;\;\;\;\;\;\;+ \mbox{Área}_{[ADE]}} \;\;\;+ \mbox{Área}_{[AEF]}+ \mbox{Área}_{[AFG]}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\mbox{Área}_{[APDE]}\;\;\;\;\;\;\;\;\;\;\;\;\;+ \mbox{Área}_{[AEF]}+ \mbox{Área}_{[AFG]}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\; \underbrace{\mbox{Área}_{[AQE]}\;\;\;\;\;\; \;\;\;\;\;\;\;\;+\mbox{Área}_{[AEF]}} \;\;+ \;\;\mbox{Área}_{[AFG]}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\mbox{Área}_{[AQEF]} \;\;\;\;\;\;\;\;\;\;\;\; \;+\mbox{Área}_{[AFG]}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\underbrace{\mbox{Área}_{[ARF]} \,\;\;\;\;\;\;\;\;\;\;\;\;\; \;+ \mbox{Área}_{[AFG]}}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\mbox{Área}_{[ARFG]}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\mbox{Área}_{[ARS]} $

$\fbox{8, 9,10}\;\;$

E bastar-nos-á determinar o paralelogramo equivalente a um triângulo $\;[ARS], \;$ no caso, $\;[A'MIS']\;$ ou $\;[KJVU]\;$, …


Nota: A sequência de procedimentos aqui usados para determinar um triângulo equivalente a um heptágono (no caso aqui ilustrado) serve bem para problemas com polígonos de qualquer número de lados.


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements
  3. George E. Martins. Geometric Constructions Springer. New York; 1997
  4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
  5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

12.4.16

Construir um paralelogramo equivalente a um triângulo dado e com um certo ângulo


Para as próximas construções que vamos apresentar, além da entrada anterior (tansporte de ângulos) precisamos de lembrar algumas das entradas de 2015 (de 17.2.15 -- Igualdade n'Os Elementos de Euclides - contexto e não definido-- a 11.4.15 -- Retas tiradas de um ponto para um círculo: igualdade de áreas de retângulos (secantes) e quadrados (tangentes)) que são referidas ao conceito de igualdade em área de figuras planas.

A excursão então feita pelo livro I de "OS Elementos" introduzia os conceitos de área e equivalência com vista a demonstrar as proposições I.47 e I.48 (teorema de Pitágoras e seu recíproco) e alguns resultados de outros livros com o fito de resolver a construção de um pentágono regular inscrito num dado círculo (IV. 11). Algumas das proposições (mais problemas de construção) abordadas então são resultados de álgebra geométrica (?) que aparecem sugeridos por problemas de áreas e são demonstradas usando igualdades (em área entre figuras) e sua axiomática (?).


Vamos resolver problemas de construção em que se recorre ao transporte de ângulos e à noção de área de uma figura plana.
Proposição (I.42) Problema: Construir um paralelogramo com um dado ângulo e de área igual à de um dado triângulo.
(1) Dados um triângulo $\;[ABC]\;$ e um ângulo $\;\angle D\hat{E}F,\;$ construir um paralelogramo $\;[GHIJ]\;$ tal que $\; \angle J\hat{G}H= \angle D\hat{E}F\;$ e $\; [GHIJ]=[ABC] \;$ (igualdade em área).

Na figura que se segue, como dados temos um triângulo $\;ABC\;$ e um ângulo $\;\angle DEF,\;$ algumas ferramentas disponíveis (que agora incluem o compasso da nossa vida). Se não puder ou não quiser dar-se a esse trabalho, pode acompanhar a nossa resolução, fazendo variar os valores de $\;\fbox{n}\;$ no cursor ao fundo.



©geometrias, 10 abril 2016, Criado com GeoGebra

Sigamos os passos da construção, deslocando o cursor n.
  1. em cima(1)
  2. Começamos a tirar por $\;A\;$ uma reta paralela a $\;BC\;$ que se faz --(I.31)-- por transporte do $\;\angle C\hat{B}A\;$ para $\;A\;$ como vértice e do outro lado de $\;AB\;$.De modo análogo, tiramos por $\;C\;$ uma paralela a $\;BA\;$. O triângulo $\;ACG_1\;$ é geometricamente igual a (ou congruente com) $\;ACB\;$ e, por isso, têm áreas iguais e a área do paralelogramo $\;[ABCG_1]\;$ é dupla da ára do triângulo $\;[ABC]\;$ --(I.40)-- e,
  3. em consequência, $\;ABC\;$ é igual em área ao paralelogramo $\;GCG_1H_1\;$ em que $\;G\;$ é o ponto médio de $\;BC\;$
  4. Como esse paralelogramo é igual em área a todos os paralelogramos que tenham $\;GC\;$ como lado e outro sobre a paralela já tirada por $\;A\;$ -- (I.36) -- para obter um paralelogramo que satisfaça o requerido, bastará transportar o ângulo $\;\angle DEF\;$ para $\;GC.\;$ O segundo lado do ângulo de vértice em $\;G\;$ e primeiro lado $\; GC\;$ define $\;H\;$
  5. De modo análogo se obtém a paralela a $\;GH\;$ tirada por $\;C\;$ que determina sobre $\;AH\;$, o vértice $\;I\,$ em falta, do paralelogramo $\;GHIC\;$ igual em área ao triângulo $\;ABC\;$ em que um dos ângulos é igual ao ângulo dado.



    1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
    2. David Joyce. Euclide's Elements
    3. George E. Martins. Geometric Constructions Springer.ew York; 1997
    4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
    5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

28.11.15

Situar um triângulo dado de modo a que cada um de 3 pontos dados estejam sobre cada um dos seus lados.


ProbLema XXVI dos Principia

ProbLema XXVI dos PRINCIPIOS1 de I. Newton

Problema:
Conhecemos os os ângulos $\; \alpha, \; \beta, \; \gamma\;$ e o comprimento do lado $\;AB\;$ de um triângulo $\;ABC.\;$ Dados três pontos $\;D,\;E, \;F\;$ não colineares, situar o triângulo $\;ABC\;$ de tal modo que $\;D\;$ incida sobre a reta $\;BA\;$, $\;E\;$ sobre $\; AC\;$ e $\;F\;$ sobre $\; CB.\; \;^1\;$

$\fbox{n=1}\;$ Do triângulo $\;ABC\;$ que vamos construir, os dados estão lançados no topo esquerdo do janela de visuaização, a saber: comprimento $\;AB\;$ e os ângulos $\; \alpha, \; \beta, \; \gamma\;$, sendo igual a quatro retos a soma das amplitudes destes últimos — $\alpha + \beta + \gamma = 4 \;$ retos. Na nossa figura pode variar as amplitudes usando os pontos verde e vermelho. Claro que se pretende que este triângulo seja construído numa posição tal que em cada uma das suas três retas (lados) incida um dos pontos $\;D, \;E, \;F\;$ a azul na figura, onde também se apresentam os três segmentos que os unem dois a dois.
Para acompanhar os passos da construção, faz-se variar de 1 a 8 o valor de $\;n\;$ no cursor presente na janela da construção dinâmica.

Para que $\;D\;$ incida sobre $\;AB\;$ e $B\hat{A}C= \alpha = D\hat{A}E, \;$, basta que A seja um ponto do arco capaz de um ângulo de amplitude $\;\alpha\;$ oposto a uma corda $\;DE\;$ de uma circunferência a passar por $\;D, \;E.\;$ Pelas mesmas razões $\;B\;$ terá de estar no arco capaz de de um ângulo $\; D\hat{B}F = \beta \;$ de uma circunferência a passar por $\; D, \;F\;$ e $\;C\;$ terá de estar num arco capaz do ângulo $\;\gamma=F\hat{C}E\;$ numa circunferência a passar por $\;E, \;F.\;$






24 novembro 2015, Criado com GeoGebra
>Nota: Não pretendemos fazer demonstração, mas tão só os passos da construção<


$\fbox{n=2, 3, 4}\;$ Determinam-se os arcos $\;DAE, \;DBF, \;FCE \;$ capazes dos ângulos $\;\alpha, \;\beta, \;\gamma\;$ das circunferência de centros $\;P, \;Q, \; O\;$ que têm um ponto $\;G\;$ comum.

$\fbox{n=5}\;$ Para determinar $\;A\;$ sobre $\;(P, PG)\;$ colinear com $\;D\;$ da mesma circunferência e com $\;B\;$ da circunferência $\;(Q, QG)\;$, determina-se $\;GA\;$ tal que $$\frac{GA}{AB}=\frac{GP}{PQ}$$ da semelhança dos triângulo $\;GPQ\;$ e $\;GAB\;$ (por ser $\;G\hat{P}Q= G\hat{A}D, \; \;G\hat{Q}P= G\hat{B}D \;$)

$\fbox{n=6}\;$ Conhecido $\;GA\;$, determina-se $\;A\;$ sobre o arco $\;EGD\;$ de $\;(P, PG)\;$

$\fbox{n=7}\;$ As retas $\;DA\;$ e $\;EA\;$ definem dois ângulo de amplitude $\;\alpha \;$ verticalmente opostos e servirão definir o triângulo $\;ABC\;$ que procuramos:

$\fbox{n=8}\;$ $\;B\;$ estará sobre a reta $\;AD\;$ e sobre o arco $\;DGF\;$ de $\;(Q, QG)\;$ e capaz de ângulos de amplitude $\;\beta. \;$ Finalmente $\;C\;$ fica determinado como interseção da reta $\;EA\;$ com a reta $\;BF\;$ sobre o arco capaz $\;FCE\;$ de ângulos de amplitude $\;\gamma\;$.


$^1\;$Lemma XXVI. To place the three angles of a triangle, given both in kind and magnitude, in respect of as many right lines given by position, provided they are not all parallel among themselves in such manner that de several angles may touch the several lines.
Sir Isaac Newton, The Mathematical Principles of Natural Philosophy. (Andrew Motte) pp.91-92 Vol.I. London: 1803.