Mostrar mensagens com a etiqueta Igualdade. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Igualdade. Mostrar todas as mensagens

27.8.17

Dividir um triângulo em duas partes equivalentes sendo uma delas um triângulo rectângulo

Dividir um triângulo em duas partes equivalentes por uma perpendicular a um lDO
Dividir um triângulo em duas partes equivalentes
por uma perpendicular a um dos seus lados

Apresentamos a seguir uma construção dinâmica a ilustrar que para qualquer triângulo e um dos seus lados há uma perpendicular a esse lado que o divide em dois polígonos equivalentes

O enunciado do problema desta entrada é:
Dado um triângulo acutângulo $\;ABC\;$ determinar uma perpendicular a $\;BC,\;$por exemplo, que divide $\;ABC\;$ em duas partes iguais em área.

Pode seguir as etapas da nossa construção e notas de demonstração usando a barra de navegação para passos da construção ao fundo do rectângulo de visualização
  1. Apresenta-se inicialmente um triângulo $\;ABC.\;$
    • Sabemos que, das perpendiculares a $\;BC,\;$ a altura $\;AD\;$ divide o triângulo $\;ABC\;$ em duas partes.
      Quando e só quando $\;D\;$ é o ponto médio de $\;BC,\;$ $\;ABD\;$ é equivalente a $\;ACD\;$ e o segmento de reta que procuramos é a altura $\;AD\;$
    • Quando a área de $\;ABD\;$ é maior que a área de $\;BAD,\;$ a reta perpendicular que procuramos é paralela à altura e há-de cortar os lados $\;AB\;$ e $\;BC.\;$ Designemos por $\;A’\;$ e $\;D’\;$ esses pontos de intersecção que definem a reta perpendicular a $\;BC\;$ que divide em duas partes equivalentes o triângulo $$\; [ABC]=[A’BD’] \cup[AA’D’C]\; \;\; \wedge \mbox{Área de }\;\;[A’BD’] = \mbox{Área de }\;\;[AA’D’C] \; $$
      Como determinamos $\;D’$?
    • Quando a área de $\;ABD\;$ é menor que a área de $\;ADC,\;$ a reta perpendicular que procuramos é paralela à altura e há-de cortar os lados $\;AC\;$ e $\;BC.\;$ Designemos por $\;A’\;$ e $\;D’\;$ esses pontos de intersecção que definem a reta perpendicular a $\;BC\;$ que divide em duas partes equivalentes o triângulo $$\; [ABC]=[A’CD’] \cup[D’A’AB]\; \;\; \wedge\;\;\; \mbox{Área de }\;\;[A’D’C] = \mbox{Área de }\;\;[D’A’AB] \; $$
      Para este caso, a determinação de $\;D'\;$ segue os mesmos passos.
  2. 26 agosto 2017, Criado com GeoGebra

  3. Na figura agora apresentada, estão visíveis todos os elementos construtíveis auxiliares para a determinação da perpendicular $\;A’D’\;$ tal que $$\; [ABC]=[A’BD’] \cup[AA’D’C]\; \;\; \wedge \;\; \mbox{Área de }\;\;[A’BD’] = \mbox{Área de }\;\;[AA’D’C]. \; $$ Se se verificam as condições de divisão de $\;ABC\;$ em duas partes equivalentes, então $$\;\mbox{Área de}\;\;[ABC] = 2 \times \mbox{Área de}\;\;[A’BD’]\;\; \mbox{ou} \;\; \mbox{Área de}\;\;[A’BD’] = \frac{1}{2}\mbox{Área de}\;\;[ABC] $$ que é o mesmo que dizer $$\frac{BD’ \times A’D’}{2} = \frac{1}{2} \times \frac{BC\times AD}{2}$$ e, tomando o ponto $\;M\;$ médio de $\;BC\;$, que é tal que $\;\displaystyle BM=\frac{BC}{2},\;$ podemos escrever $$\mbox{Área de}\;\;[A’BD’] = \frac{BD’ \times A’D’}{2}= \frac{1}{2} (BM\times DA)$$ A condição para a posição de $\;A’D’\;$ pode assim resumir-se a $$\; BD’ \times A’D’ = BM\times DA \;\; \mbox{ou} \;\; \frac{BD’}{BM}=\frac{DA}{D’A’}$$ Como $\;A’D’\;$ e $\;AD\;$ são perpendiculares à mesma $\;BC\;$, os triângulos $\;ABD\;$ e $\;A’BD’ \;$ são retângulos com um ângulo comum $\;\hat{B}.\;$ $$\;\displaystyle \frac{DA}{D’A’} =\frac{BD}{BD’}\;$$ E podemos assim escrever $$\frac{BD’}{BM}=\frac{BD}{B’D’}\;\; \mbox{ou} \;\; BD’^2 = BM \times BD$$ o que nos determina a posição de $\;D’\;$ sobre $\;BC.\;$ Na nossa construção optámos por considerar a potência do ponto $\;B\;$ relativa à circunferência de diâmetro $\;MD\;$ e como o segmento da tangente a esse círculo tirada por $\;B\;$ é tal que $\;BT^2=BM \times BD\;$ sendo $\;T\; $ o ponto de tangência, $\;D’\;$ determina-se como um ponto de intersecção $\;[BC] \cap (B, \; BT)\;$
  4. Realçam-se o triângulo $\;A’BD’\;$ de área igual a metade da área de $\;ABC\;$ e o equivalente quadrilátero $\;AA’D’C\;$ ambos azulados.
  5. Quando passa para a etapa 4 na barra de navegação dos passos de construção, verá o mesmo que viu na etapa anterior a menos que coloque $\;A\;$ numa posição para a qual a área de $\;ABD\;$ seja menor que a área de $\;CAD.\;$ Deslocando $\;A\;$ para o lado de $\;B\;$ passará pelo caso em que $\;AD\;$ divide $\;ABC\;$ em dois triângulos iguais e finalmente para o caso em que uma perpendicular a $\;BC\;$ divide $\;ABC\;$ em duas partes equivalentes: $\;CA'D'\;$ e $\;ABD'A'\;$ esverdeadas.


Cluzel, R.; Robert, J-P. La Géometrie et ses applications. (Enseignement Technique) Librairie Delagrave. Paris: 1964
Caronnet, Th. Éxércices de Géométrie -quatrième livre: Les Aires 4. éd.,Librairie Vuibert. Paris:1947

18.3.15

Um primeiro exemplo de proposição de álgebra geométrica, usando áreas (o corta e cola)


No Livro II de "Os Elementos", apresentam-se resultados que estabelecem aparentes relações algébricas (álgebra geométrica), recorrendo somente à noção de igualdade (equivalência) de áreas (conteúdos) e às operações de que já descrevemos a base axiomática e a que chamamos de "corta e cola" (acrescentar ou remover figuras a outras figuras). Para além dos exemplos do Livro I, - Prop. XXXV, XXXVII, XLVII, XLVIII - já abordados (enunciados e demonstrações transcritas) incluindo construções dinâmicas de apoio a partir das originais, vamos agora tomar um ou outro exemplo do Livro II para serem usados mais adiante em construções exemplares da forma genial como Euclides elaborou o seu pensamento geométrico. Vamos passar a usar expressões algébricas, como poderíamos ter usado no Teorema de Pitágoras das últimas entradas, $$\;BC^2= AC^2 + AB^2\;$$ em vez de escrever que, de um triângulo $\;ABC\;$ retângulo em $\;A\;$, o quadrado de lado $\;BC\;$ (oposto a $\;Â\;$) é equivalente à soma dos quadrados de lados $\;AB\;$ e $\;AC\;$.

PROP. V. TEOR. Livro II

Se $\;AB\;$ for dividido em duas partes iguais por $\;C\;$ e em duas partes desiguais por $\;D\;$, o retângulo de lados $\;AD, BD\;$ acrescentado ao quadrado de lado $\;CD\;$ e igual ao quadrado de lado $\;BC\;$ - metade de $\;AB\;$.
$$AD\times BD + CD^2 = BC^2$$


© geometrias. 18 de Março 2015, Criado com GeoGebra

Se precisar, clique nos botões "□ -mostar/ocultar" para ver realce de figuras importantes na demonstração

Passos da construção e demonstração:
  1. Usando a PROP. XLVI PROB. do Livro I (36.1), construímos o quadrado de lado $\;BC\;$ - $\;[BCEF]\;$
  2. Usando o Postulado I, tiramos a reta $\;BE\;$
  3. Usando (31.1),
    • por $\;D\;$ tiramos uma paralela a $\;CE\;$ (ou a $\;BF\;$) que interseta $\;BE\;$ em $\;H\;$ e $\;EF\;$ em $\;G\;$;
    • por $\;H\;$ tiramos uma paralela a $\;CB\;$ (ou $\;EF\;$) que interseta $\;CE\;$ em $\;L\;$ e $\;BF\;$ em $\;M\;$;
    • por $\;A\;$ tiramos uma paralela a $\;CL\;$ (ou a $\;BM\;$ que interseta a reta $\;LM\;$ em $\;K\;$
  4. Por (43.1), Os paralelogramos $\;[DCLH],\; [MHGF]\;$ são iguais em conteúdo (ou área) por serem complementos no paralelogramo quadrado $\;[BCEF]\;$ dos dois paralelogramos (quadrados) $\;[BDHM], \; [CHLE]\;$ que existem ao longo da diagonal $\;BE\;$
  5. Se acrescentarmos a cada um dos complementos $\;[DCLH],\; [MHGF]\;$ iguais em área, o mesmo $\;[DHMB]\;$ obtemos dois retângulos $\;[BCLM], \;[BDGF]\;$ iguais em área
  6. Por (36.1), os paralelogramos (retângulos) $\;[CAKL]\;$ e $\;[BCLM]\;$ que têm bases iguais - $\;AC=CB|, \;$ por hipótese - e estão entre as mesmas paralelas - $\;AB \parallel KM. \;$ por construção, - são iguais em conteúdo (em área);
  7. Sendo $\;[AKLC],\; [CLMB]\;$ iguais em área e, como antes tínhamos visto, $\; [CLMB]\;$ é igual em área a $\;[BDGF],\;$ então temos $\;[AKLC],\;[BDGF]\;$ iguais em área.
  8. Podemos concluir que o quadrado de lado $\;BC,\; \;[BCEF]\;$ é igual em área ao gnomon (ver definição 2.2 abaixo) $\;[CMG] = [BCLHGFM]\;$ acrescentado de $\;[HLEG],\;$ quadrado de lado igual a $\;CD\;$
    ou ao retângulo $\;[AKHD]\;$ acrescentado do mesmo quadrado de lado $\;CD\;$, já que o gnomon referido é $\;[GDGFB]\;$ (ou $\;[AKHD]\;$ igual em área) acrescentado de $\;[CLHD]\;$ □

$$AD \times DB +CD^2 = CB^2$$

Livro I
PROP. XLVI. PROB.
Sôbre uma linha reta dada descrever um quadado
PROP. XXXI. PROB.
De um ponto dado conduzir uma linha reta paralela a outra linha reta dada
PROP. XXXVI. TEOR.
Os paralelogramos, que estão postos sôbre bases iguais, e entre as mesmas paralelas, são iguais
PROP. XLIII. TEOR.
Em qualquer paralelogramo os complementos dos paralelogramos, que existem ao redor da diagonal, são iguais entre si
PROP. XLI. TEOR.
Se um paralelogramo e um triângulo estiverem sôbre a mesma base, e entre as mesmas paralelas, o paralelogramo será o dôbro do triângulo
................................
Livro II
DEFINIÇÕES:
I
Todo o paralelogramo retângulo se considera compreendido por duas linhas retas, que formam o ângulo reto.
II
Em todo o paralelogramo $\;[BCEF]\;$ a figura $\;[BCLHGFB],\;$ que resulta de um paralelogramo daqueles (por exemplo, o de diagonal $\;BH\;$), que existem na diagonal $\;BE\;$ do paralelogramo maior, juntamente com os dois complementos (de diagonais $\;CH\;$ e $\;HF\;$, chama-se gnômon. Dêste modo o paralelogramo $\;HB ,\;$ juntamente com os complementos, $\;CH, \;HF\;$ fazem o gnômon que por brevidade, nota-se com as letras $\;CMG,\;$ ou $\;LDC,\;$ que estão postas nos vértices dos ângulos opostos dos paralelogramos, que formam o gnômon.


  1. Euclides. Elementos de Geometria dos seis primeiros livros do undécimo e duodécimo da versão latina de Frederico Commandino , Adicionados e Ilustrados por ROBERTO SIMSON, Prof de Matemática na Academia de Glasgow. Revistos para Edições Cultura por ANÍBAL FARO. Edições Cultura. São Paulo (BR): 1944
  2. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2000

27.2.15

Elementos: Teorema de Pitágoras.


Optamos por escolher alguns exemplos de enunciados e demonstrações de #"Os Elementos" para ilustrar o que Euclides tinha em mente quando usava a palavra igualdade associada à construção de conceitos diferentes. Temos andado a abordar resultados relacionados com áreas de figuras planas, apresentando resultados muito conhecidos (por enunciados atuais), mas transcritos do original para perceber como era ao tempo da génese das noções de geometria escrita.

TEOREMA DE PITÁGORAS
PROP. XLVII. TEOR.

Em todo o triângulo retângulo o quadrado feito sôbre o lado oposto ao ângulo reto, é igual aos quadrados formados sôbre os outros lados, que fazem o mesmo ângulo reto .


© geometrias. 28 de Fevereiro 2015, Criado com GeoGebra

Fazendo variar o valor de $\;n\;$ (no selector no centro ao fundo da janela de construção) verá o desenvolvimento da figura relativa à demonstração.

Seja o triângulo retângulo ABC, cujo ângulo reto seja BAC. Digo que o quadrado feito sôbre o lado BC é igual aos quadrados descritos sôbre os lados BA, AC, que formam o ângulo reto BAC.
Descreva-se sôbre BC o quadrado BDEC (Pr. 46.1.*), e sôbre BA, AC os quadrados GB, HC. Pelo ponto A tire-se AL, paralela (Pr. 31.1. **) a BD, ou CE, tirem-se também as retas AD, FC. Porque os ângulos BAC, BAG são retos (Def. 30. ***), as duas retas CA, AG estão em direitura uma com outra (Pr. 14.1. ****). O mesmo será a respeito das duas AB, AH. Os ângulos DBC, FBA, por serem retos, são iguais. Ajunte-se-lhes o mesmo ângulo ABC. Logo, o total DBA será igual ao total FBC (Ax. 2.*****). E sendo as duas AB, BD iguais às duas FB, BC, cada uma a cada uma, e o ângulo DBA = FBC, será o triângulo ABD = FBC outro triângulo (Pr. 4.1.******). Mas o paralelogramo BL é o dôbro (Pr. 41.1.*******) do triângulo ABD, porque está sôbre a mesma base BD, e entre as mesmas paralelas BD, AL; e o quadrado GB é o dôbro do triângulo FBC, porque tem a base comum FB, e estão q as mesmas paralelas FB, GC. Logo, sendo iguais os dobros de quantidades iguais (Ax. 6.********), deve ser o paralelogramo BL igual ao quadrado GB. Do mesmo modo, tiradas as retas AE, BK, se demonstra, que o paralelogramo CL é igual ao quadrado HC. Logo, o quadrado inteiro BDEC, feito sôbre o lado BC oposto ao ângulo reto BAC, é igual aos dois quadrados GB, HC formados sôbre os lados BA, AC, que fazem o mesmo ângulo reto BAC. □

*PROP XLVI.PROB.
Sôbre uma linha reta dada descrever um quadrado
**PROP. XXXI. PROB.
De um ponto dado conduzir uma linha reta paralela a outra linha reta dada
*** DEFINIÇÃO XXX.
Entre as figuras quadriláteras, o quadrado é o que é juntamente equilátero e retângulo
**** PROP.XIV. TEOR.
Se em um ponto de uma linha reta qualquer concorrerem de partes opostas duas retas, fazendo com a primeira reta os ângulos adjacentes iguais a dois retos, as retas, que concorrem para o dito ponto, estarão em direitura uma da outra.
***** AXIOMA II
Se a cousas iguais se juntarem outras iguais, os todos serão iguais.
****** PROP. IV. TEOREMA.
Se dois triângulos tiverem dois lados iguais a dois lados, cada um a cada um, e os ângulos, compreendidos por êstes lados, forem também iguais; as bases e os triângulos, e os mais ângulos, que são opostos a lados iguais, serão também iguais.
*******PROP. XLI. TEOR.
Se um paralelogramo e um triângulo estiverem sobre a mesma base, e enre as mesmas paralelas, o paralelogramo será o dobro do triângulo.
********AXIOMA VI
As quantidades, das quais cada uma por si faz o dôbro de outra quantidade, são iguais.

Nota: Dedicadas ao Teorema de Pitágoras, há mais 50 entradas com diferentes enunciados, construções, demonstrações, aplicações, ... publicadas neste Lugar Geométrico.
  1. Euclides. Elementos de Geometria dos seis primeiros livros do undécimo e duodécimo da versão latina de Frederico Commandino , Adicionados e Ilustrados por ROBERTO SIMSON, Prof de Matemática na Academia de Glasgow. Revistos para Edições Cultura por ANÍBAL FARO. Edições Cultura. São Paulo (BR): 1944
  2. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2000