Mostrar mensagens com a etiqueta Euclides. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Euclides. Mostrar todas as mensagens

6.9.17

Áreas: Problemas de Optimização


Nesta entrada, embora todas as construções sejam feitas com régua e compasso, recorremos a operações algébricas, conceitos de função polinomial, derivada, etc.

O enunciado adaptado do problema desta entrada é:
Consideremos dois pontos $\;A,\;B\;$ e sobre esse segmento, com vértice em $\;A,\;$ construimos um quadrado $\;AEFD.\;$ Sobre $\;BD\;$ tomamos $\;K\;$ na intersecção com $\;EF.\;$ Determinar o comprimento do lado do quadrado para o qual a área do triângulo $\;KEB\;$ é máxima.

  1. Na figura inicial aparecem-nos os pontos $\;A,\;B,\;C,\;D,\;E,\;F,\;K,\;L,\;O,\;X,\;Y,\;$ os segmentos $\;AB=a(>0),\;AD,\; AE,\;BD,\;$$EF,\;FD,\;OX,\;XL,\;LY,\;YO,\;$ o quadrado de lado $\;AD\;$ e o comprimento do seu lado, o triângulo retângulo em $\;E, \;\;[KEB],\;$ e o valor da sua área, ambos em vermelho.
    Ao lado, o retângulo $\;OXLY\;$ tem dimensões $\;OX=AD \;\mbox{e} \; OY= \displaystyle \frac{BE \times EK}{2}\;$
    Está assim reunida toda a informação necessária ao estudo da relação entre os números $\;OY =y\;$ associados às áreas dos triângulos $\;KEB\;$ a variar com os valores $\;AD=OX=x\;$ dos lados dos quadrados $\;AEFD\;$ estes a variar entre $\;0\;$ e $\;a=AB.\;$
  2. 4 setembro 2017, Criado com GeoGebra

  3. Como $\;DA=AE=EF=FD = x\;$ e $\;K\;$ é um ponto da diagonal $\;DB\;$ a dividir em dois triângulos o retângulo $\;AB \times AD, \;$ podemos concluir que $\;AE\times EK = EB \times KF\;$ (Os Elementos de Euclides; Livro I; Proposição XLIII TEOR: Em qualquer paralelogramo os complementos dos paralelogramos, que existem ao redor da diagonal, são iguais entre si ) Clicando no botão Notas obtém os elementos auxiliares da construção relativos ao resultado anterior.
  4. Como $\;AE\times EK = EB \times KF\;$ pode ser escrito assim: $$x\times EK = (a-x) \times (x-KE) \Longleftrightarrow\\ x \times EK = ax-x^2-a \times KE +x\times KE \Longleftrightarrow \\ KE= \frac{ax-x^2}{a}$$ então o valor associado à área $\;y= \displaystyle \frac{BE \times EK}{2}$ do triângulo $\;KEB\;$ pode ser dado pela expressão $$\; y= \frac{(a-x) \times \displaystyle \frac{ax-x^2}{a}}{2} $$ simplificando $$y= \frac{(a-x) \times (ax-x^2)}{2a}$$ $$ y=\frac{a^2x-ax^2-ax^2+x^3}{2a} $$ e, finalmente, $$y=\frac{1}{2a}x^3 -x^2 +\frac{ax}{2}$$ que nos dá os valores de $\;y\;$ (áreas dos triângulos $\;KEB$ ) em função de $\;x\;$ (valores dos comprimentos do lado dos quadrados construídos a partir de $\;A\;$ sobre $\;AB\;$) cujo gráfico é traçado por $\;L(x,y)\;$ com $\;0 < x \leq a\;$ e $\;y\geq 0.\;$ Procuram-se o(s) valor(es) de $\;x\;$ para o qual $\;y\;$ atinge o seu valor máximo, acima das áreas de todos os outros triângulos construídos nas condições do problema.
  5. A derivada $$\;y’_x = \frac{3}{2a}x^2 -2x + \frac{a}{2}$$ para valores positivos de $\;a\;$ anula-se em alguns pontos que vamos calcular. $$\frac{3}{2a}x^2 -2x + \frac{a}{2} =0 \Longleftrightarrow x= \displaystyle\frac{2 ± \sqrt{4-4\frac{3}{2a}\frac{a}{2}}}{2\times \frac{3}{2a}} \Longleftrightarrow x=\frac{a}{3}\wedge x=a $$ Entre $\;0\;$ e $\;a\;$ para qualquer $\; a>0$, o valor da área do triângulo $\;y=\frac{4a^2}{54}\;$ é máximo quando o valor do comprimento do lado do quadrado é $\;x=\frac{a}{3}.\;$ Para o valor máximo do lado do quadrado $\;x=a,\;$ o valor da área do triângulo é $\; y=0,\;$ como se pode verificar imediatamente.

Sangaku Optimization Problems:
(All animations written by David Schultz in MAPLE (TM). Source code available upon request: davvu41111@mesacc.edu)
Japanese Optimization Problem by Kojima Yokichi -1999
Problem Statement: A square is constructed using the far-left endpoint of a segment of fixed length. For what side length of the square will the area of the red triangle be a maximum?
Sacred Mathematics: Japanese Temple Geometry. Fukagawa, H. & Rothman, T. 2008.

13.5.16

Quadratura de um "crescente" (lúnula , Hipocrates)


Ao filósofo / médico / matemático grego Hipocrates de Cós (n. 460 A.C. em Cós - f. 370 A.C. em Lárissa) é atribuído o estudo de várias figuras limitadas por por dois arcos de circunferências (dos quais um é semicircunferência e outro é um arco de circunferência correspondente à corda diâmetro da anterior) a que chamou lúnulas. Nesta entrada, procuramos ver que uma determinada lúnula (crescente) tem área igual a um dado quadrado.

Usando noções comuns, definições e teoremas de "Os Elementos" de Euclides,
determinar um quadrado com a mesma área de uma dada lúnula que tem como diâmetro do primeiro arco (semicircunferência) o lado do quadrado inscrito na circunferência do segundo arco.
Fazendo variar os valores de $\;\fbox{n}\;$ no cursor do topo à esquerda, pode seguir os passos da resolução/demonstração.




©geometrias, 12 maio 2016, Criado com GeoGebra



$\fbox{n=1}\;\;\;\;$ Apresenta-se a lúnula em estudo e da qual intentaremos uma quadratura.
$\fbox{n=2}\;\;\;\;$ As duas circunferências em causa são uma com centro em $\;O\;$ e diâmetro $\;AB\;$ e outra de centro em $\;C\;$ e raio$\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ $\;AC\;$ circunscrita ao quadrado de lado $\;A, \;$ no caso $\;ABEF\;$
$\fbox{n=3}\;\;\;\;$ Na figura estão em evidência o quadrado $\;ADBC\;$ inscrito na circunferência de centro $\;O\;$ e diâmetro $\;AB,\;$ o$\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ quadrado $\;ABEF\;$ inscrito na circunferência de centro $\;C\;$ e raio $\;AC\;$
$\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ O quadrado $\;ADBC\;$ está dividido em dois (quatro) triângulos retângulos. Tomemos o triângulo $\;ABC\;$ $\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ retângulo em $\;C\;$ e retenhamos que a área do quadrado de lado $\;AB\;$ é igual à soma das áreas os quadrados $\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ de lados $\;BC\;$ e $\;CA\;$ (I.47 - Teor. de Pitágoras)
$\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ Como $\;BC=CA\;$ podemos dizer que a área do quadrado de lado $\;AB\;$ é o dobro da área do quadrado de $\\ \; \;\;\;\;\;\;\;\;\;\;\;\;\;$lado $\;BC\;$ (ou $\;CA$ ): $\; — AB^2 = 2 \times BC^2.\;$
$$\;\mathfrak{area}[ABEF] = 2\times \mathfrak{area}[ADBC] \;$$ $\\ \; \;\;\;\;\;\;\;\;\;\;\;\;\;$ e, por isso, a razão entre as áreas dos círculos também será de 1 para 2: $$\;\mathfrak{area}(C,\;CA) = 2 \times \mathfrak{area}(O,\;OA) \;$$
$\fbox{n=4}\;\;\;\;$ Na figura ilustramos as diferenças de cada um dos círculos para os seus quadrados inscritos para esclarecer$\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ que se retirarmos à área de $\;(C, \;CA)\;$ quatro áreas iguais a $\;(AMBOA]\;$ ficamos com a área do quadrado$\\ \; \;\;\;\;\;\;\;\;\;\;\;\;[ABEF].\;$ De igual modo, acontece com $\;(O, \;OA)\;$ e $\;[ADBC].\;$
$\;\;\;\;\;\;\;\;\;\;\;\;\mathfrak{area}(C,\;CA) - 4\times \mathfrak{area}(AMBOA] = \mathfrak{area} [ABEF]\;\;$ que é o mesmo que
$\;\;\;\;\;\;\;\;\;\;\;\;\; 2\times \mathfrak{area}(O,\;OA) - 4\times \mathfrak{area}(AMBOA] = 2\times \mathfrak{area} [ADBC],\;$ e dividindo por dois $\;\;\;\;\;\;\;\;\;\;\;\;\mathfrak{area}(O,\;OA) - 2\times \mathfrak{area}(AMBOA] = \mathfrak{area} [ADBC].\;$ E, porque
$\;\;\;\;\;\;\;\;\;\;\;\; \mathfrak{area}(O,\;OA) - 4\times \mathfrak{area}(ADA] = \mathfrak{area}[ADBC],\;$ é obvio que $$\;\mathfrak{area}(AMBOA] = 2\times \mathfrak{area}(ADA].\; $$ $\;\;\;\;\;\;\;\;\;\;\;\;$Podemos concluir que $$\;\mathfrak{area}(AMBOA] = \mathfrak{area}(ADA] +\mathfrak{area}(DBD] .\; $$
$\fbox{n=5}\;\;\;\;$ Tirando $\;\mathfrak{area} (AMBOA] \;$ à semicircunferência $\;\mathfrak{area}(ADBO]\;$ ficamos com a $\;\mathfrak{area}(ADBMA(\;$ da lúnula Por $\;\;\;\;\;\;\;\;\;\;\;\;$outro lado, vimos que tirando $\;\mathfrak{area}(BCB] +\mathfrak{area}(CAC]\; $ à semicircunferência $\;\mathfrak{area}[AOCBCA)\;$ ficamos $\;\;\;\;\;\;\;\;\;\;\;\;$com o triângulo retângulo $\; \mathfrak{area}[ABC].\;$ Como iguais subtraídos de iguais são iguais (noção comum 3),$\;\;\;\;\;\;\;\;\;\;\;\;$ podemos concluir que $$\mathfrak{area}(ADBMA( = \mathfrak{area}[ABC]$$
$\fbox{n=6}\;\;\;\;$ E a área do triângulo $\;[ABC]\;$ é obviamente igual à área do quadrado $\;[AOCJ],\;$ por exemplo. Assim fica feita a $\;\;\;\;\;\;\;\;\;\;\;\;$quadratura do "crescente".



  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements
  3. George E. Martins. Geometric Constructions Springer. New York; 1997
  4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
  5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

5.5.16

Quadratura de um pentágono dado


Nas últimas entradas, fizemos construções de triângulo equivalente a polígono dado e também de construção de paralelogramo equivalente a um triângulo. Podemos assim dizer que, com régua e compasso, podemos construir paralelogramo (mesmo com um certo lado e um certo ângulo) equivalente a um qualquer polígono. Como um retângulo é um paralelogramo de ângulos retos, podemos construir um retângulo equivalente a um polígono dado e, como já tratámos da construção de um quadrado equivalente a retângulo dado, podemos construir um quadrado equivalente a um qualquer polígono. Deixamos aqui as referências das nossas entradas que trataram desse problema:

  1. 18.3.15
    Um primeiro exemplo de proposição de álgebra geométrica, usando áreas (o corta e cola)
    PROP. V. TEOR. Livro II
    Se AB for dividido em duas partes iguais por C e em duas partes desiguais por D, o retângulo de lados AD,BD acrescentado ao quadrado de lado CD e igual ao quadrado de lado BC - metade de AB

  2. 21.3.15
    elementos: segundo exemplo de álgebra geométrica (Livro II, Prop. VI)
    Livro II - PROP. VI. TEOR.
    Sendo uma reta AB, e nela o ponto C que divide o segmento AB em duas partes iguais e um ponto D tal que AD=AB+BD, então o retângulo de lados iguais a AB e BD acrescentado do quadrado de lado igual a CB é igual ao quadrado de lado igual a CD.

  3. 26.3.15
    Elementos: média e extrema razão; álgebra geométrica (Prop. XI do Livro II)
    Livro II - PROP. XI. PROB.
    Dividir uma linha reta de sorte que o retângulo de tôda e de uma parte seja igual ao quadrado da outra parte

  4. 4.4.15
    Elementos: potência de um ponto (Livro III, PROP. XXXVI. TEOR.)
    Livro III, PROP. XXXVI. TEOR.
    Se de um ponto qualquer fora de um círculo se tirarem duas linhas retas, das quais uma corte o círculo, e a outra o toque; será o retângulo compreendido por toda a reta que corta o círculo e pela parte dela que fica entre o dito ponto e a circunferência convexa do círculo, igual ao quadrado da tangente.

  5. 11.4.15
    Retas tiradas de um ponto para um círculo: igualdade de áreas de retângulos (secantes) e quadrados (tangentes)
    Livro III - PROP. XXXVII. TEOR.
    Se de um ponto qualquer fora de um círculo se tirarem duas retas, das quais uma corte o círculo, e a outra chegue somente até a circunferência; e se o retângulo compreendido pela reta inteira que corta o círculo e pela parte dela que fica entre o dito ponto e a parte convexa da circunferência, fôr igual ao quadrado da reta incidente sôbre a circunferência, será a reta incidente tangente do círculo
Por isso, nesta entrada de hoje não há qualquer novidade. Só não resistimos a publicar uma construção do triângulo equivalente a um pentágono muito mais elegante que qualquer das que apresentámos antes e ir até ao ponto de fazer a quadratura do pentágono (determinar um quadrado igual em área (ou equivalente) a um pentágono dado).

Avaliará se valeu a pena.

Fazendo variar os valores de $\;\fbox{n}\;$ no cursor do topo à esquerda, pode seguir os passos da resolução.




©geometrias, 5 maio 2016, Criado com GeoGebra



$\fbox{n=0}\;\;\;\;$ Para além do cursor $\;\fbox{n=0,1, 2,3,4,5, 6},\;$ temos o pentágono $\;[ABCDE].\;$

$\fbox{n=1}\;\;\;\;$ Prolongamos $\;AE\;$ Traçamos $\;AC\;$ e uma paralela a esta tirada por $\;B\;$ que vai intersectar $\;AE\;$ em $\;F.\;$ Do $\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ outro lado, traçamos $\;CE\;$ e a paralela a ela tirada por $\;D\;$ que intersecta $\;AE\;$ em $\;G.\;$
$\fbox{n=2}\;\;\;\;$ Os triângulos $\;[ABC]\;$ e $\;[AFC]\;$ são iguais em área e pela mesma razão são iguais em área os triângulos $\\\;\;\;\;\;\;\;\;\;\;\; \;[CDE]\;$ e $\;[CGE].$

$\;\;\;\;\;\;\;\;\;\;\;\; \mathfrak{area}[ABCD]=\mathfrak{area}[ABC]+\mathfrak{area}[ACE]+\mathfrak{area}[CDE]\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; =\mathfrak{area}[AFC]+\mathfrak{area}[ACE]+\mathfrak{area}[CGE]\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; =\mathfrak{area}[FCG] $

$\fbox{n=3}\;\;\;\;$ Como já vimos em anteriores entradas, o triângulo $\;[FCG]\;$ tem área igual ao paralelogramo retângulo
$\;\;\;\;\;\;\;\;\;\;\;\;\; [GHIM]\;$ por ser $\;M\;$ o ponto médio de $\;FG\;$ ou $\;FG= 2 \times MG\;$ e $\;HI\;$ incidir em $\;C\;$

$\fbox{n=4}\;\;\;\;$ O lado do quadrado equivalente ao retângulo $\;[GHIM]\;$ é o meio proporcional $\;x\;$ na proporção cujos extremos $\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$ são as dimensões do retângulo: $$x^2 =GA \times GH \Longleftrightarrow \frac{MG}{x} =\frac{x}{GH}....................\mbox{Euclides (300 AC) Elelemntos VI.13}$$ $ \; \;\;\;\;\;\;\;\;\;\;\;\;$Bastará acrescentar ao lado $\;MG\;$ do retângulo o outro lado $\;GH.\;$ Assim: Com centro em $\;G\;$ e a passar por$\\ \; \;\;\;\;\;\;\;\;\;\;\;\;H,\;$ traçamos a circunferência que determina $\; J\;$ na sua intersecção com a reta $\;FG\;$

$\fbox{n=5}\;\;\;\;$ $MJ =MG+GH$ é o diâmetro da circunferência que intersecta a reta $\;GH\;$ no ponto $\;L\;$ e Thales (600 AC) $\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$descobriu e provou que o ângulo inscrito numa semicircunferência $\; [MLJ] \;$ é retângulo em $\;L\;$ - 1º Teorema $\\ \; \;\;\;\;\;\;\;\;\;\;\;\;$(de Thales (?)) - e, $\;GL\;$ é o meio proporcional que procuramos.

$\fbox{n=6}\;\;\;\;$ O quadrado $\;[GLRQ]\;$ é um belo representante dos quadrados equivalentes ao pentágono $\;[ABCDE]\;\;\; \square $



  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements
  3. George E. Martins. Geometric Constructions Springer. New York; 1997
  4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
  5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

29.4.16

Construir um triângulo equivalente a um polígono


Na entrada anterior, resolvemos o problema repetindo a construção (I.44) tantas vezes quantos os triângulos em que dividamos o polígono dado.

No caso da nossa ilustração abaixo, temos um polígono $\;[ABCDEFG]\;$ e tomamos o segmento $\;JK\;$ para lado do paralelogramo equivalente a $\;[ABCDEFG]\;$ a construir. Em vez de tomarmos uma decomposição do polígono em triângulos e para cada um desses triângulos construir o paralelogramo equivalente, vamos previamente proceder à construção de um triângulo equivalente ao polígono $\;[ABCDEFG]\;$ e só depois construir o paralelogramo equivalente a esse triângulo.

©geometrias, 29 abril 2016, Criado com GeoGebra



Fazendo variar os valores de $\;\fbox{n}\;$ no cursor do fundo à direita, pode seguir os passos da resolução.


O processo de construção de um triângulo equivalente ao polígono $\;[ABCDEFG]\;$ é feito de repetições da determinação de um triângulo equivalente a um quadrilátero. Assim:

$\fbox{1,2}\;\;$

Escolhemos para começar o quadrilátero $\;[ABCD]\;$ e a sua diagonal $\;AC.\;$ Determinamos o ponto $\;P\;$ de intersecção de $\;CD\;$com a reta paralela a $\;AC\;$ tirada por $\;B.\;$ Os triângulos $\;[APC]\;$ e $\;[ABC]\;$ são iguais em área por terem uma base comum $\;AC\;$ e os terceiros vértices $\;B,\;P\;$ sobre $\;BP\;$ paralela a $\; AC\;$ comum.
Como $\;\mbox{Área}_{[ABCD]} = \mbox{Área}_{[ABC]} + \mbox{Área}_{[ACD]},\; \;\mbox{Área}_{[APD]}=\mbox{Área}_{[APC]} + \mbox{Área}_{[ACD]},\;$ podemos dizer que $\;\mbox{Área}_{[ABCD]}= \mbox{Área}_{[APD]},\;$ já que, como vimos, $\; \mbox{Área}_{[ABC]} = \mbox{Área}_{[APC]}.\;$

$\fbox{3,4}\;\;$

Tomamos de seguida $\;[APDE]\;$ e a diagonal $\;AD\;$ e determinamos $\;Q\;$ na intersecção de $\;DE\;$ com a paralela a $\;AD\;$ tirada por $\;P.\;$ E, como o anteriormente visto em procedimento análogo, são equivalentes os triângulos $\;[APD]\;$ e $\;[AQD].\;$
E, em consequência, $\; \mbox{Área}_{[APDE]} = \mbox{Área}_{[AQE]}, \;$ já que $\; \mbox{Área}_{[APDE]} =\mbox{Área}_{[APD]}+\mbox{Área}_{[ADE]} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\mbox{Área}_{[AQD]}+\mbox{Área}_{[ADE]}\;$

$\fbox{5,6}\;\;$

Com o mesmo raciocínio se toma agora $\;[AQEF],\;$, a sua diagonal $\;AE\;$ e determinamos o ponto $\;R\;$ de intersecção da reta $\;EF\;$ com a paralela a $\;AE\;$ tirada por $\;Q.\;$
E, como $\;\mbox{Área}_{[AQE]} = \mbox{Área}_{[ARF]}, \; \;\; \mbox{Área}_{[AQEF]} = \mbox{Área}_ {[ARF]}\;$.

$\fbox{7}\;\;$

Finalmente, para o nosso caso, consideremos o quadrilátero $\;[ARFG],\;$ a sua diagonal $\;AF\;$ e determinamos o ponto $\;S\;$ na intersecção de $\;EF\;$ com a paralela a $\;AF\;$ tirada por $\;G.\;$ (Podíamos ter optado por um ponto $\;S\;$ na intersecção de $\;GF\;$ com a paralela a $\;AF\;$ tirada por $\;R).\;$
E, como $\; \mbox{Área}_{AFS}=\mbox{Área}_{AFG}, \; \mbox{Área}_{ARFG}= \mbox{Área}_{ARF}+\mbox{Área}_{FGA} =\mbox{Área}_{ARF}+ \mbox{Área}_{FSA} = \mbox{Área} {ARS}.\;$ «
Finalmente podemos concluir que
$$\;\mbox{Área}_{[ABCDFG]} = \mbox{Área}_{[ARS]}\;$$ De facto, os passos da construção acompanham
$\displaystyle \mbox{Área}_{[ABCDEFG]} = \\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\underbrace{\mbox{Área}_{[ABC]}+ \mbox{Área}_{[ACD]}}+ \mbox{Área}_{[ADE]} + \mbox{Área}_{[AEF]}+ \mbox{Área}_{[AFG]}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;\;\;\;\;\;\mbox{Área}_{[ABCD]} \;\;\;\;\;\;\;+ \mbox{Área}_{[ADE]} + \mbox{Área}_{[AEF]}+ \mbox{Área}_{[AFG]}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;\;\;\;\;\;\underbrace{\mbox{Área}_{[APD]}\;\;\;\;\;\;\;\;+ \mbox{Área}_{[ADE]}} \;\;\;+ \mbox{Área}_{[AEF]}+ \mbox{Área}_{[AFG]}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\mbox{Área}_{[APDE]}\;\;\;\;\;\;\;\;\;\;\;\;\;+ \mbox{Área}_{[AEF]}+ \mbox{Área}_{[AFG]}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\; \underbrace{\mbox{Área}_{[AQE]}\;\;\;\;\;\; \;\;\;\;\;\;\;\;+\mbox{Área}_{[AEF]}} \;\;+ \;\;\mbox{Área}_{[AFG]}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\mbox{Área}_{[AQEF]} \;\;\;\;\;\;\;\;\;\;\;\; \;+\mbox{Área}_{[AFG]}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\underbrace{\mbox{Área}_{[ARF]} \,\;\;\;\;\;\;\;\;\;\;\;\;\; \;+ \mbox{Área}_{[AFG]}}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\mbox{Área}_{[ARFG]}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\; \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\mbox{Área}_{[ARS]} $

$\fbox{8, 9,10}\;\;$

E bastar-nos-á determinar o paralelogramo equivalente a um triângulo $\;[ARS], \;$ no caso, $\;[A'MIS']\;$ ou $\;[KJVU]\;$, …


Nota: A sequência de procedimentos aqui usados para determinar um triângulo equivalente a um heptágono (no caso aqui ilustrado) serve bem para problemas com polígonos de qualquer número de lados.


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements
  3. George E. Martins. Geometric Constructions Springer. New York; 1997
  4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
  5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

20.4.16

Construir um paralelogramo equivalente a um polígono


As últimas entradas foram dedicadas a problemas de construção de paralelogramos equivalentes a triângulos dados, ... A proposição I.45 de "Os Elementos" trata do problema de construção de um paralelogramo de área igual a um polígono, sendo dados um lado e um ângulo do paralelogramo a construir .

Este problema resolve-se com recurso às construções de paralelogramo equivalente a um triângulo dado que é repetida tantas vezes quantos os triângulos em que dividamos o polígono em causa.

No caso da nossa ilustração abaixo, temos um polígono $\;ABCDEF\;$ e tomamos para lado do paralelogramo o segmento $\;GH\;$ e um ângulo $\; \angle STU \;$ a que deve respeitar o ângulo do paralelogramo de vértice $\;H.\;$ Pode variar o ângulo $\; \angle STU,\;$ o comprimento de $\;GH.\;$

©geometrias, 20 abril 2016, Criado com GeoGebra

No caso,decompusemos o nosso polígono $\;ABCDEF\;$ de 6 lados em 4 triângulos $\;ABC, \;ACD, \;ADE, \;AEF.\;$ Começando por construir um paralelogramo de lado $\;GH\;$ de área igual a $\;ABC\;$ (exatamente, como fizemos em I.44). Depois construímos um paralelogramo de área igual a $\;ACD\;$ agora sobre o lado do primeiro paralelogramo oposto a $\;GH, \;$ etc. Desse modo, construímos quatro paralelogramos, cada um deles com área igual a um dos triângulos em que decompomos o polígono. Assim o paralelogramo $\;GHILJ\;$ e o polígono $\;ABCDEF\;$ são equivalentes (de áreas iguais). Claro que este processo pode ser usado para construir paralelogramos equivalentes a polígonos de qualquer número de lados.

Para evitar a complicação que este processo euclidiano de repetição acarreta, convém lembrar que se pode sempre construir um triângulo equivalente a um polígono(qualquer que ele seja) e depois só haverá necessidade de aplicar os procedimentos (I.44).


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements
  3. George E. Martins. Geometric Constructions Springer. New York; 1997
  4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
  5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

17.4.16

Novo problema de construção de paralelogramo de área igual à de um triângulo.


A Proposição (I.42) tratava do problema de construção de um paralelogramo com um dado ângulo e de área igual à de um dado triângulo.
Com recurso a essa construção I.42 e também a I.43 em que se mostrou que paralelas aos lados tiradas por qualquer ponto de diagonal de um paralelogramo, este fica dividido em quatro paralelogramos, dos quais dois são sempre iguais em área,
vamos resolver um novo problema de construção.

Proposição I.44 Problema:   Dados um segmento $\;AB\;$, um triângulo $\; \Delta PQR\;$ e um ângulo $\;\angle S\hat{T}U\;$, construir um paralelogramo $\;ABHI\;$ tal que $\;angle ABH = \angle STU\;$ e ainda $\;[ABHI]\; $ e $\;[PQR]\;$ sejam iguais em área.



©geometrias, 17 abril 2016, Criado com GeoGebra

Sigamos os passos da construção, deslocando o cursor $\;\fbox{n=i}, i=0,1, 2, \ldots, 7\;$
  1. $\;n=0 \;\;\;AB, \; \Delta PQR , \; \angle STU \;$
  2. $\;n=1 \; \;\;$ Acrescentam-se
    • $\;R'\;$ na reta $\;AB\;$, de tal modo que $\;BR'=QR\;$
    • $\;(B, QP) . (R', PR) \rightarrow P'\;\;\;\;$ e, assim, $\; P'B=PQ, \; P'R'=PR\;$
    para $\;\Delta BR'P' =\Delta PQR\; $ (LLL) e, por isso, serem iguais em área.
  3. $\;n=2\; \;\;$ Acrescentam-se os pontos $\;C\;$ médio de $\;BR',\;$ e $\; S', \;U' \:$ tais que $\;BS'=BU'=BS\;$ e $\;S'U'=SU\;$ que, como vimos nas entradas anteriores, chegam para determinar um paralelogramo de área igual à área de $\;PQR\;$ e com um ângulo em $\; B\;$ igual a $\;\angle STU \;$ de lados $\;BC\;$ e sobre as retas $\;BU', \;$ paralela a $\;BC\;$ tirada por $\;P'\;$ e paralela a $\;BU'\;$ tirada por $\;C.\;$
  4. $\;n=3\; \;\;$ Acrescentam-se os segmentos $\;BE,\;CD,\;ED,\;$ em que $\;D, \;E\;$ são intersecções das retas referidas anteriormente
  5. $\;n=4\; \;\;$ Acrescenta-se o paralelogramo $\;ABEFP\;$ com um lado -$\;BE\;$ - comum a $\;BCDE\;$
  6. $\;n=5\; \;\;$ A reta $\;BF\;$ interseta a reta $\;DC\;$ em $\;G.\;$ E acrescenta-se o segmento $\;FG\;$ que passa por $\;B\,$
  7. $\;n=6\; \;\;$ As retas $\;EB,\;FA\; $ intersectam a paralela a $\;AB\,$ tirada por $\;G\;$ em, respectivamente, $\;H, \;I.\;$ Ficam assim definidos vários novos paralelogramos, de que nos interessam os seguintes: $\;BCGH, \; ABHI,\; FDGI\;$
  8. $\;n=7\; \;\;$ Do paralelogramo $\;FDHI,\;\;FG\;$ é uma das suas diagonais, e $\;ABHI, DEBG\;$ estão nas condições consideradas em (I:43, da última entrada) para serem iguais em área. Fica assim demonstrado que o paralelogramo $\;ABHI,\;$ para além de ter $\,AB\;$ como lado, é igual em área ao triângulo $\;\Delta PQR\;$        □



  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements
  3. George E. Martins. Geometric Constructions Springer. New York; 1997
  4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
  5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

15.4.16

Trabalhar com áreas (usar noções comuns numa demonstração)


A proposição 43 do Livro I trata da divisão de um paralelogramo em quatro paralelogramos com um vértice comum sobre uma das suas diagonais sendo dois deles iguais em área. Veja-se a figura abaixo.
Toma-se um paralelogramo $\;[ABCD]\;$ e escolhe-se uma diagonal, por exemplo, $\;AC\,$ e um ponto $\;K\;$ sobre ela. Por $\;K\;$ tiramos uma paralela $\,GH\;$ a $\;AB\;$ e outra $\;EF\;$ a $\;AD.\;$ O paralelogramo fica dividido em 4 paralelogramos, a saber: $\;HAEK,\; FCGK, \;GBEK, \; FDHK.\;$ Prova-se que os últimos dois, sombreados, são iguais em área.




©geometrias, 14 abril 2016, Criado com GeoGebra
Pode mover $\;A,\;B,\;C\;$ e $\;K\;$ sobre a diagonal $\;AC\;$.

Por ser $\;ABCD\;$ um paralelogramo (I.33) $\;AB = CD \; \mbox{e} \; AD=BC. \;$ Por razões análogas, podemos dizer que $\;AE=HK, \;AH=EK, \; FC=GK, \;CG=FK. \;$ Podemos por isso dizer que são congruentes os seguintes pares de triângulo (I.8: LLL): $\;[ABC]= [CDA],\;[AEK] = [KHA], \;[KGC]=[CFK].\;$

Aos dois triângulos $\;[ABC],\; [CDA]\;$ iguais retiramos, respetivamente, $\;[AEK],\;[KGC]\;$ e $\; [KHA], \;[CFK]\;$ sobrando do primeiro triângulo $\; [ABC]\;$ o paralelogramo $\;[GBEK]\;$ e, do segundo triângulo $\;[CDA]\;$, o paralelogramo $\;[FDHK].\;$
Como de iguais subtraídos de iguais sobram iguais, $\;[GBEK]\;$ e $\;[FDHK]\;$ são iguais em área.        □



  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements
  3. George E. Martins. Geometric Constructions Springer.ew York; 1997
  4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
  5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

12.4.16

Construir um paralelogramo equivalente a um triângulo dado e com um certo ângulo


Para as próximas construções que vamos apresentar, além da entrada anterior (tansporte de ângulos) precisamos de lembrar algumas das entradas de 2015 (de 17.2.15 -- Igualdade n'Os Elementos de Euclides - contexto e não definido-- a 11.4.15 -- Retas tiradas de um ponto para um círculo: igualdade de áreas de retângulos (secantes) e quadrados (tangentes)) que são referidas ao conceito de igualdade em área de figuras planas.

A excursão então feita pelo livro I de "OS Elementos" introduzia os conceitos de área e equivalência com vista a demonstrar as proposições I.47 e I.48 (teorema de Pitágoras e seu recíproco) e alguns resultados de outros livros com o fito de resolver a construção de um pentágono regular inscrito num dado círculo (IV. 11). Algumas das proposições (mais problemas de construção) abordadas então são resultados de álgebra geométrica (?) que aparecem sugeridos por problemas de áreas e são demonstradas usando igualdades (em área entre figuras) e sua axiomática (?).


Vamos resolver problemas de construção em que se recorre ao transporte de ângulos e à noção de área de uma figura plana.
Proposição (I.42) Problema: Construir um paralelogramo com um dado ângulo e de área igual à de um dado triângulo.
(1) Dados um triângulo $\;[ABC]\;$ e um ângulo $\;\angle D\hat{E}F,\;$ construir um paralelogramo $\;[GHIJ]\;$ tal que $\; \angle J\hat{G}H= \angle D\hat{E}F\;$ e $\; [GHIJ]=[ABC] \;$ (igualdade em área).

Na figura que se segue, como dados temos um triângulo $\;ABC\;$ e um ângulo $\;\angle DEF,\;$ algumas ferramentas disponíveis (que agora incluem o compasso da nossa vida). Se não puder ou não quiser dar-se a esse trabalho, pode acompanhar a nossa resolução, fazendo variar os valores de $\;\fbox{n}\;$ no cursor ao fundo.



©geometrias, 10 abril 2016, Criado com GeoGebra

Sigamos os passos da construção, deslocando o cursor n.
  1. em cima(1)
  2. Começamos a tirar por $\;A\;$ uma reta paralela a $\;BC\;$ que se faz --(I.31)-- por transporte do $\;\angle C\hat{B}A\;$ para $\;A\;$ como vértice e do outro lado de $\;AB\;$.De modo análogo, tiramos por $\;C\;$ uma paralela a $\;BA\;$. O triângulo $\;ACG_1\;$ é geometricamente igual a (ou congruente com) $\;ACB\;$ e, por isso, têm áreas iguais e a área do paralelogramo $\;[ABCG_1]\;$ é dupla da ára do triângulo $\;[ABC]\;$ --(I.40)-- e,
  3. em consequência, $\;ABC\;$ é igual em área ao paralelogramo $\;GCG_1H_1\;$ em que $\;G\;$ é o ponto médio de $\;BC\;$
  4. Como esse paralelogramo é igual em área a todos os paralelogramos que tenham $\;GC\;$ como lado e outro sobre a paralela já tirada por $\;A\;$ -- (I.36) -- para obter um paralelogramo que satisfaça o requerido, bastará transportar o ângulo $\;\angle DEF\;$ para $\;GC.\;$ O segundo lado do ângulo de vértice em $\;G\;$ e primeiro lado $\; GC\;$ define $\;H\;$
  5. De modo análogo se obtém a paralela a $\;GH\;$ tirada por $\;C\;$ que determina sobre $\;AH\;$, o vértice $\;I\,$ em falta, do paralelogramo $\;GHIC\;$ igual em área ao triângulo $\;ABC\;$ em que um dos ângulos é igual ao ângulo dado.



    1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
    2. David Joyce. Euclide's Elements
    3. George E. Martins. Geometric Constructions Springer.ew York; 1997
    4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
    5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

7.4.16

Transporte de um ângulo: passos da construção: economia, método e razão. Existência.



A construção da entrada de 16 de Janeiro de 2014, intitulada
Com compasso e régua euclidianos, transferir distâncias
cria o conceito correspondente ao compasso actual, ao demonstrar que com circunferências (definidas por um ponto e um intervalo) e as retas (definidas por dois pontos) se podem transferir distâncias (segmentos), isto é construir um segmento congruente a outro. Este conceito de compasso, correspondente a uma série de operações com retas e circunferências, passa a ser usado em futuras construções.
A proposição I.23 dos "Elementos" trata da transferência de um ângulo. Pode enunciar-se: Dados um segmento $\,[AB]\;$ e um ângulo de vértice $\;D,\;$ e lados $\; DC, \; DE\;$ ou $\; \angle CDE\;$, construir um ângulo $\;\angle BAH\;$ congruente com $\;\angle CDE\;$
Habitualmente segue-se o esquema:
  1. $\;(D,\;r)\;$ e $\;(A, \; r)\;$ congruentes ($\;r\;$ qualquer)
    • $\;(D,\;r). \dot{D}C = {E}\;$
    • $\;(D,\;r). \dot{D}E = {F}\;$
    • $\;(A, \;r). \dot{A}B = {G}\;$
  2. $\;(G,\;EF)\;$
    • $\;(G,\;EF). (A,\;r|) = {\ldots, \;H}\;$
  3. $\;AH\;$
    • $\; AG =AH= DE=DF\;$ e
      $\; EF=GH\;$ -- cordas iguais correspondentes a arcos iguais de circunferências iguais (congruentes). $$\;(LLL) \rightarrow [GAH]=[EDF]\;$$ $$\angle BAH = \angle GAH = \angle EDF = \angle CDE$$
Resumindo: a transferência pedida exige quatro traçados: três circunferências (compasso novo) e uma reta (régua).


A construção que pode fazer a seguir com as ferramentas euclidianas (únicas fornecidas) segue o raciocínio que apresentámos e que se resume a transferir distâncias, como deve ter observado. Se não quiser fazer a construção, pode seguir as etapas da construção (baseadas no esquema descrito na entrada citada acima) fazendo variar os valores de $\; \fbox{n=i},\; i=1, 2, \ldots, \;6\; $





@geometrias, 7 abril 2016, Criado com GeoGebra

Sigamos os passos da construção, deslocando o cursor n. Procuramos determinar um ponto $\;H: \; \angle BAH = \angle CDE,\;$ usando só a circunferência e a reta, e a partir dos cinco pontos $\;A,\;B,\;C,\;D,\;E.$
  1. Partindo dos cinco pontos $\; A,\; B,\;C, \; D,\; E,\;$ começamos por transferir $\;AB\;$ para $\;\dot{D}C\;$ e $\;\dot{D}E\;$ a partir de $\;D\;$
    1. $(D,DA), \; (A, AD)$
      • (D,DA). (A, AD) --> P : ADP é um triângulo equilátero
    2. $\;(A,\;AB)\;$ e $\;AP\;$
      • $\;(A,\;AB).AP \rightarrow Q \;$ sendo $\;AQ= AB\;$
    3. $\;(P, PQ=PA+AQ)\;$ e $\;PD\;$
      • $\;(P, PQ=PA+AQ) . PD\; \rightarrow R$, sendo $\;PR=PD+DR =PQ=PA+AQ,\;$ é $\;DR=AB\;$
    1. $\;(D, \;DR)=(D, \;AB)\;$ e $\;DE, \; DC\;$
      • $\;(D, \;AB) . DC \rightarrow F \;$ sendo $\;DF=AB\;$
      • $\;(D, \;AB) . DE \rightarrow G \;$ sendo $\;DG=AB\;$
  2. Já temos $\;DCF=DEG= AB.\;$ Procuramos $\;H: \; BH=FG\;$ o que é o mesmo que transferir $\;FG\;$ para uma reta a passar e começando em $\;B\;$
    1. $\;(F, \;FB)\;$ e $\,(B, \;BF)\;$
      • $\;(F, \;FB) . (B, \;BF) \rightarrow S$
      • $\;BF=FS=SB \;$
    2. $\;(F, \;FG)\; $ e $\;SF\;$
      • $\;(F, \;FG) . \;SF \rightarrow T\;$ sendo $\;FT=FG\;$
    3. $\; (S, \; ST)\;$ e $\;SB\;$
      • $\; (S, \; ST) . SB \rightarrow U\;$ sendo $\;ST=SF+FT=SF+FG= SB+FG\;$ e $\;SU= SB+BU.\;$ E, em consequência, $\;BU=FG\;$ já que $\;ST=SU\;$
    4. $\;(A, \;AB)\;$ e $\;(B, \;BU)\;$
      • $\;(A, \;AB) . (B, \;BU) \rightarrow H\;$ sendo $\;BH=BU=FG\;$
      • E assim temos os ângulos $\;\angle BAH = \angle FDG =\angle CDE. \;\;\;\;\;\;\;\;\;\;$ □

    Comparando o trabalho feito com o compasso novo com este trabalho que recorre só ao compasso euclidiano, compreendemos um pouco melhor a genialidade na organização do estudo por Euclids, na construção de cada conceito (proposição-- problema de construção--, como prova de existência também de novas ferramentas). A partir de pontos, retas e circunferências a geometria de uma imensidão de construtíveis integrados… é um jogo que podemos jogar solitariamente, mas que partilhamos com prazer.


    1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
    2. David Joyce. Euclide's Elements
    3. George E. Martins. Geometric Constructions Springer.ew York; 1997
    4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
    5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

5.11.15

Não há mais que cinco poliedros regulares



Construíndo, validámos a existência de cinco sólidos de faces planas equiláteras e equiângulas e iguais entre si, a saber: tetraedro, hexaedro ou cubo, ocatedro, dodecaedro e icosaedro. Para além dessas cinco figuras, podemos dizer que não há outras figuras sólidas cujas faces planas sejam equiláteras e equiângulas e iguais entre si?

Nas últimas entradas, temos vindo a seguir as construções do Livro XIII: Os Sólidos "Platónicos* de Os Elementos. As definições de sólidos (Def. 11.1) e ângulos sólidos (Def. 11.11) estão no Livro XI - Estereometria Elementar.
Seguindo (11.11), a existência de um ângulo sólido exige mais de dois ângulos planos intersetando-se num ponto e não pertencendo a um mesmo plano. Em (11.12) diz-se que uma pirâmide é uma figura sólida, contida por planos os quais são construídos a partir de um plano para um ponto fora dele. Em (11.13) escreve-se que um prisma é contido por planos, dois dos quais opostos são iguais e paralelos, sendo os restantes paralelogramos. …
  1. Com triângulos equiláteros
    1. Três é o menor número de planos para construir um ângulo sólido e o tetredro é uma pirâmide cujo ângulo sólido é construído por três triângulos equiláteros, iguais entre si, com um vértice comum.
    2. O ângulo sólido do octaedro é construído por quatro triângulos equiláteros e o ângulo sólido do iscosaedro por cinco triângulos equiláteros, iguais entre si, com um vértice comum.
    3. O ângulo sólido do icosaedro é construído com cinco triângulos equiláteros, iguais entre si, com um vértice comum.




    4. E é claro que seis triângulos equiláteros com um vértice comum pois cada um dos ângulos planos de um triângulo equilátero é duas terças partes de um ângulo reto e a soma de seis deles é igual a quatro retos e, por isso, estarão todos num só plano. E também, é assim claro que não pode haver um ângulo sólidos forrado por mais de seis triângulos equiláteros
  2. Na figura que se segue, pode ver-se que o ângulo sólido de um hexaedro de faces quadradas é forrado por por três ângulos retos planos e não pode haver qualquer ângulo sólido contido por quatro quadrados já que a sua soma em torno de um mesmo vértice seria de quatro retos.

  3. Finalmente apresenta-se o caso do dodecaedro em que cada ângulo sólido é limitado por três pentágonos regulares. Mas porque cada ângulo plano de um pentágono é um um reto e um quinto de reto e a soma de quatro deles em torno de um ponto comum é maior que quatro retos.


    © geometrias. 5 de Novembro de 2015, Criado com GeoGebra

Fica assim claro que não há mais que cinco sólidos platónicos, isto é, não há mais que cinco poliedros cujas faces são polígonos equiláteros e equiângulos.

*O mais provável é que os cinco sólidos regulares tenham sido descobertos na escola pitagórica. Mas são denominados por Sólidos Platónicos porque eles aparecem no diálogo Timaeus de Platão. Muitos dos teoremas deste livro, particularmente os últimos dois sólidos, são atribuídos a Teeteto de Atenas.
  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

16.10.15

Elementos: Comparações das arestas dos sólidos platónicos inscritos numa mesma esfera


Proposição 18:
Para definir os lados das cinco figuras e compará-los uns com os outros.


Consideremos a esfera dada definida pela semi-circunferência de diâmetro $\;AB\;$ em que se inscrevem um tetraedro, um octaedro, um hexaedro, um dodecaedro e um iscosaedro. As construções dessas figuras sólidas foram sendo apresentadas em recentes páginas deste "lugar geométrico".


© geometrias. 14 de Outubro de 2015, Criado com GeoGebra



  1. Tomemos um ponto $\;C\;$ de $\;AB\;$ tal que $\;AC=CB\;$ e um ponto $\;E\;$ da semi-circunferência de diâmetro $\;AB\;$ e da perpendicular a $\;AB\;$ tirada por $\;C.\;$ Sabemos que $\;AC=CB\;$ ou $\;AB=2.BC$ e por serem iguais os catetos $\;AE, \;EB\;$ do triângulo retângulo de hipotenusa $\;AB\;$ $$\;AB^2=2.BE^2.\;$$ Como tínhamos visto que o quadrado sobre o diâmetro da esfera é o dobro do quadrado da aresta do octaedro nela inscrito, é certo que $\;BE\;$ é igual ao lado (aresta) do octaedro inscrito na esfera de diâmetro $\;AB.\;$
  2. Tomando um ponto $\;D\;$ de $\;AB\;$ tal que $\;AD=2.DC\;$ e um ponto $\;F\;$ da semi-circunferência de diâmetro $\;AB\;$ e da perpendicular a $\;AB\;$ tirada por $\;D.\;$
    1. Sabemos que $\;AD=2.DB\;$ é o mesmo que $\;AB=3.DB\;$ ou $\;AB= \displaystyle \frac{3}{2} AD.\;$ E, por serem equiangulares os triângulos $\;BAF,\;$ retângulo em $\;F\;$ e $\;DAF,\;$ retângulo em $\;D,\;$ podemos escrever $$\frac{BA}{AF}=\frac{FA}{AD}= \frac{BF}{FD},$$ de onde se retira que $\;BA.AD=AF^2 .\;$ Como $\;\displaystyle \frac{BA}{AD}= \frac{AB.AB}{AD.AB}=\frac{AB^2}{AF^2} ,\;$ temos $$AB^2 = \frac{3}{2} . AF^2$$ Como antes tínhamos visto que o quadrado do diâmetro de uma esfera é uma vez e meia o quadrado do lado (aresta) do tetraedro nela inscrito, é certo que $\;AF\;$ é igual ao lado (aresta) do tetraedro inscrito numa esfera de diâmetro $\;AB\;$
    2. Sendo $\; AB=3.DB\;$ e, porque os triângulos $\;BAF,\;$ retângulo em $\;F,\;$ e $\;FBD, \;$ retângulo em $\;D,\;$ são equiangulares, podemos escrever $$\frac{AB}{BF}=\frac{FA}{FD}= \frac{BF}{BD},$$ de onde se retira que $\;AB.BD=BF^2.\;$ Como $\;\displaystyle \frac{AB}{BD}= \frac{AB.AB}{AB.BD}=\frac{AB^2}{BF^2}\;$ temos $$AB^2 =3BF^2.$$ Como antes tínhamos visto que o quadrado do diâmetro de uma esfera é o triplo do quadrado da aresta do cubo nela inscrita, é certo que $\;BF\;$ é igual ao lado (aresta) do cubo inscrito na esfera de diâmetro $\;AB\;$

    1. Tomando um ponto $\;G\;$ na perpendicular a $\;AB\;$ tirada por $\;A\;$ e de tal modo que $\;AG=AB\;$ e consideremos os pontos $\;H\;$ de interseção da semi-circunferênca com $\;CG\;$ e $\;K\;$ de $\;AB\;$ e pé da perpendicular a $\;AB\;$ tirada por $\;H.\;$ Como $\;GA=AB=2.AC\;$ e por $\;GA \parallel HK\;$ podemos escrever $\;\displaystyle \frac{GA}{AC} =\frac{HK}{KC}\;$ e, por isso, $\;HK=2.KC,\;$ de onde $\;HK^2 = 4KC^2.\;$ Por ser retângulo em $\;K\;$ o triângulo $\;CHK,\;$ é $\;HC^2=CK^2+KH^2\;$ e, como $\;HC=CB\;$, podemos concluir que $\;BC^2 =4KC^2+Kc^2=5KC^2.\;$
      Sabendo que $\;AB=2BC\;$ e $\;AD=2DB, \;$ ao tirarmos $\;AD\;$ a $\;AB\;$ ficamos com $\;DB\;$ e tirando $\;DB\;$ a $\;BC\;$ ficamos com $\;DC,\;$ podemos dizer que $\;DB=2CD\;$ ou seja $\;BC= BD+DC= 2DC+DC=3CD\;$ e $BC^2=9CD^2.\;$ Assim por ser $\;BC^2 = 5CK^2=9CD^2, \;$ terá de ser $\;CK > CD .\;$
      Tomando agora os pontos $\;L,\;$ sobre $\;AB\;$ tal que $\;KC=CL,\;$ e $\;M\;$ na interseção da perpendicular a $\;AB\;$ tirada por $\;L\;$ com a semi-circunferência, sendo $\;KL = 2CK,\; AB=2BC, BC^2=5CK^2\;$, é $\;AB^2=5KL^2.\;$
      Como antes tínhamos visto que o diâmetro da esfera é cinco vezes o raio do círculo a partir do qual se constrói o icosaedro nela inscrito, é certo que $\;KL\;$ é o raio do círculo a partir do qual se constrói o icosaedro inscrito numa esfera de diâmetro $\;AB\;$. $\;KL\;$ é o lado do hexágono inscrito nesse círculo de partida e o lado do pentágono inscrito nesse mesmo círculo é igual à aresta do icosaedro. Da construção do icosaedro, lembramos que o diâmetro $\;AB\;$ da esfera era composto por um lado do hexágono inscrito na circunferência de raio $\;KL\;$ acrescentado de dois lados de decágono inscrito em circunferências de raio $\;KL, \;$ o que nos alerta para que $\;AK=LB\;$ é o lado do decágono inscrito na circunferência de raio $\;KL\;$. Como já tínhamos visto $\;HK=2KC,\; KL=2KC, \;KC=CL\;$ e, em consequência, $\;LM=KC=KL\;$. Temso assim um triângulo $\;BML,\;$ retângulo em $\;L\;$ sendo os catetos $\;BL,\;LM\;$ respetivamente iguais ao lado de um decágono e ao lado de um hexágono ambos inscritos numa circunferência de raio $\;KL\;$. Por isso, a sua hipotenusa $\;BM\;$ é o lado do pentágono regular inscrito no mesmo círculo de raio $\;KL,\;$ sendo assim certo que
      $\;BM\;$ é igual ao lado (aresta) do icosaedro inscritível numa esfera de diâmetro $\;AB.\;$
    2. Vimos, na entrada relativa a essa construção, que a aresta do dodecaedro inscritível numa esfera de diâmetro $\;AB\;$ é a parte maior de uma divisão em média e extrema razão da aresta do cubo inscritível na mesma esfera. Sendo $\;FB\;$ igual a cada lado dos quadrados que formam o cubo inscrito na esfera de diâmetro $\;AB,\;$ determinamos o ponto $\;N\;$ que divide o segmento $\;FB\;$ em duas partes $\;FN, \;NB\;$, sendo $\;BN > NF\;$ e $\;\displaystyle \frac{FB}{BN}=\frac{BN}{NF} \;$ equivalente a $\;NB^2=NF.FB\;$ e é certo dizer que $\;NB\;$ é igual à aresta do dodecaedro regular inscritível numa esfera de diâmetro $\;AB.\;$
Concluindo:
  • Sabemos que $$AB^2=\frac{3}{2}AF^2 =2BE^2=3BF^2,$$ de onde se pode retirar que $$AF^2= \frac{4}{3}BE^2=2BF^2$$ que pode ler-se:
    as razões entre os quadrados das arestas dos tetraedro, octaedro e hexaedro (cubo) regulares inscritos numa mesma esfera são racionais $\;\frac{4}{3}, \frac{3}{2}, 2, 3, ...$.
  • Já o mesmo não se pode dizer das razões entre os quadrados das arestas do icosaedro e do dodecaedro inscritíveis numa mesma esfera ou entre quadrados de qualquer destas com quadrados de cada aresta do tetraedro, octaedro ou cubo, que são sempre irracionais.
Pode ter interesse ainda comparar as arestas do icosaedro e do dodecaedro (ambos inscritos na mesma esfera): A aresta do icosaedro ($\;MB\;$) é maior que a aresta do dodecaedro ($\;NB\;$) (inscritos numa esfera de diâmetro $\;AB\;$ qualquer).

  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

22.9.15

Elementos: Construção de dodecaedro inscritível numa dada esfera.


Proposição 17:
Construir um dodecaedro
inscritível numa dada esfera.

Consideremos a esfera dada definida pela semicircunferência de diâmetro $\;A_0B_0\;$ a azul na figura em que também tomamos um ponto $\;C_0\;$ do diâmetro tal que $\;A_0C_0+C_0B_0=A_0B_0\;$ e $\;A_0C_0=2\times B_0C_0\;$ e um ponto $\;D_0\;$ da semicircunferência $\;A_0D_0B_0\;$ tal que $\; A_0\hat{C_0}D_0\;$ seja reto. Ficam traçados também $\;C_0D_0\;$ a azul, e $\;D_0B_0,\;$ a vermelho. Passos da construção:
  1. Como já vimos antes (XIII.15), um cubo de aresta igual a $\;D_0B_0\;$ inscreve-se numa esfera de diâmetro $\;A_0B_0.\;$
    Começamos por desenhar duas faces consecutivas do cubo encapsulável nessa esfera, ou seja, dois quadrados (de lados iguais a $\;D_0B_0\;$)a saber: $\; ABCD \;$ e $\;BEFC\;$.
    Desses dois quadrados determinamos os pontos médios $\;G, \; H,\;K, \; L, \; M, \;N,\;O, \;$ dos seus lados $\;AB, \;BC, \;CD,\;EF,\; EB, \;CF,\;$ respetivamente.
    A seguir traçámos os pares de segmentos $\;HM, \;NO, \; \;HL, \;GK,\;$ unindo os pontos médios de lados opostos de cada um desses quadrados que definem os pontos $\;P\;$ e $\;Q.\;$
    Determina-se sobre $\;NP\;$ o ponto $\;R\;$ que o divide em média e extrema razão sendo $\;RP > NR. \;$ E dividimos, igualmente em média e extrema razão, $\;PO\;$ por $\;S\;$ e $\;HQ\;$ por $\;T,\;$ sendo $\;SP > OP\;$ e $\;TQ > HT.\;$
    Tiramos por $\;R\;$ e $\;S\;$ perpendiculares ao plano $\;CBE\;$ e de cada uma delas tomemos um segmento de comprimento $\;PR=PS, \;$ e para o exterior do cubo, $\;RU\;$ e $\;SV.\;$ Determinámos, do mesmo modo, $\;W\;$ sobre a perpendicular tirada por $\;T\;$ ao plano $\;ABC,\;$ sendo $\;TW=QT=PR=PS\;$


    © geometrias. 20 de Setembro de 2015, Criado com GeoGebra

    Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)

    Os pontos $\;U,\;B,\;W,\;C, \:;V\;$ são vértices de um pentágono equilátero e equiângulo.
    1. Provemos que $\;UB=BW=WC=CV=VU:\;$
      Como $\;NP\;$ está dividido em média e extrema razão por $\;R\;$ com $\;PR > RN,\; \;\; PR^2=PN \times NR\;$ e dado que $\;PR=PN-NR \;$ e $\;PR^2=(PN-NR)^2= PN^2+NR^2 - 2\times PN\times NR= PN^2+NR^2 - 2\times PR^2=\;$ ou seja $$\;PN^2+RN^2=3PR^2\;\; \;\;\; \mbox{ euclideanamente provado em Elementos:}\;\; XIII.4 )$$ Por ser $\;PN=NB\;$ e $\;PR=RU\;$, podemos pois afirmar que $\;NB^2+RN^2=3RU^2.\;$ E por ser retângulo em $\;N\;$ o triângulo $\;BRN\;$, podemos escrever (I.47) $\;BR^2=BN^2+NR^2.\;$ E, assim se vê que $\;BR^2 = RU^2\;$ e $\;BR^2 + RU^2= 4RU^2.\;$ E como o triângulo $\;BUR\;$ é retângulo em $\;R,\;$ (por I.47) $\;BU^2=BR^2 + RU^2\;$ e, em consequência, $\;BU^2=4RU^2, \;$ que implica $\;BU=2UR.\;$
      Também sabemos que $\;SRVU\;$ é um paralelogramo retângulo em que $\;SR=UV(=2PR=2RU=2SV=2TW...)\;$ Fica assim demonstrado que $\;BU=UV.\;$
      Do mesmo modo se demonstra que cada um dos $\;BW, \; WC,\;CV\;$ é igual a $\;BU\;$ e $\;VU.\;$
    2. $\;U,\;B,\;W,\;C, \;V\;$ são complanares?
      O ponto $\;X\;$ no exterior do cubo original e sobre uma paralela a $\;RU\;$ e $\;SV\;$ tirada por $\;P\;$ e tal que $\;PX=RU\;$ é um ponto de $\;UV\;$ e tomemos os segmentos $\;XH\;$e $\;HW.\;$ Se provarmos que $\;X, \; H, \;W\;$ são colineares fica demonstrado que os pontos do pentágono $\;UBWCV\;$ estão todos num só plano. Assim:
      Por construção, $\;T\;$ divide $\;HQ\;$ em média e extrema razão sendo $\;QT >TH\;$ ou seja $$\frac{HQ}{QT}=\frac{QT}{TH}$$ E, como $\;HQ=HP\;$ e $\;QT=TW=PX\;$, podemos escrever que $$\frac{HP}{PX}=\frac{WT}{TH} \;\;\;\;\;\;\;\;\;\; (*)$$ Como $\;HP \parallel TW\;$, fazem cada um deles ângulos retos com o plano $\;ABC\;$. E pelas mesmas razões, por ser $\;TH \parallel PX\;$ fazem ambos ângulos retos com o plano $\;BEF\;$ (XI.6)
      E podemos concluir que os triângulos $\;XPH\;$ e $\;HTW\;$ são semelhantes já que $\;\angle X\hat{P}H = \angle H\hat{T}W = 1\;$ reto e os seus lados serem diretamente proporcionais (*) $$\frac{HP}{WT}=\frac{PX}{TH}$$ Sendo $\;HP \parallel TW\; \wedge \;TH \parallel PX\; \wedge \;XPH\; \sim\;HTW\;$ então $\;HX \parallel WH\;$ (VI.32), ou seja são uma única já que são paralelas com um ponto $\;H\;$ comum.
      Por (XI.1), sendo $\;WH\;$ e $\;HP\;$ dois segmentos de uma mesma reta, todos os seus pontos estão num mesmo plano como acontecerá com todos os pontos das retas que passam por $\;W\;$ e um outro ponto de $\;BC.\;$
    3. Já sabemos que o pentágono é uma figura plana e é equilátera. Será equiângula? A proposição (XIII.7) de "Os Elementos" diz-nos que se três ângulos, consecutivos ou não, de um pentágono equilátero são iguais então o pentágono é equiângulo.
      Como sabemos $\;R\;$ divide $\;NP\;$ em média e extrema razão sendo $\;PR > RN\;$ e, por isso, temos $$\frac{NP}{PR}= \frac{PR}{RN}$$ E, como $\;PR=PS\;$ e $\;NS=NP+PS,\;$ por (XIII.5), $\;P\;$ divide $\;NS\;$ em média e extrema razão sendo $\;NP>PS\;$ $$\frac{SN}{NP}=\frac{NP}{PS}$$ Em consequência, por (XIII.4), $\;NS^2+SP^2 = 3.NP^2.\;$ Por ser $\;NP=NB\;$ e $\;SP=SV,\;$ podemos afirmar que $\;VS^2 + SN^2= 3.NB^2, \;$ de onde resulta $\;VS^2 + SN^2 + NB^2= 4.NB^2. \;\;\; (**)$
      Como $\;SNB\;$ é um triângulo retângulo em $\;\angle \hat{N}, \;$ por (I.47), $\;SN^2+NB^2 =SB^2\;$ que com $\;(**),\;$ nos permite afirmar que $\; VS^2+SB^2 = 4.NB^2\;$ ou $\;BV^2=4.NB^2,\;\; (***)$ já que $\;BSV\;$ é retângulo em $\;S\;$ e, por (I.47), $\;VS^2+SB^2 = VB^2.\;$
      Por construção, sabíamos que $\;BC=2NB$ e ficámos agora a saber com $\;(***)\;$ que também é $\;BV=2NB, \;$ de que se tira $\;VB=BC.\;$. Como o pentágono é equilátero já sabemos que $\;BU=BW,\; UV=WC\;$ que com $\;VB=BC\;$ garantem a igualdade dos triângulos $\;BUV\;$ e $\;BWC\;$ e, em consequência, as igualdades dos ângulos $\;B\hat{U}V,\; \;B\hat{W}C\;$ opostos a $\;BV\;$ e $\;BC\;$ e dos ângulos $\;B\hat{V}U,\; B\hat{C}W\;$ opostos a $\;BU\;$ e $\;BW\;$ respetivamente. Já temos três ângulos do pentágono iguais entre si e por (XIII.7) o pentágono é equiângulo
    4. O pentágono construído pelo processo acima explicitado é uma figura plana equilátera e equiângula do qual $\;BC\;$ é uma diagonal. $\;BC\;$ é uma das doze arestas do cubo inscrito numa esfera de diâmetro $\;A_0B_0 .\;$ Se fizermos a mesma construção sobre cada uma das doze arestas do cubo, teremos construído uma qualquer figura sólida, contida por doze pentágonos equiláteros e equiângulos, a que chamamos dodecaedro
  2. Falta provar que esta figura sólida está encapsulada na mesma esfera (de diâmetro $\;A_0B_0\;$) em que está inscrito o cubo de aresta $\;D_0B_0\;$ de que partimos.
    1. Para provar que o dodecaedro construído tem os vértices sobre a superfície esférica gerada por uma semi-circunferência de diâmetro igual a $\;A_0B_0\;$começamos por lembrar que a reta $\;PX\;$ é perpendicular ao plano $\;BCE\,$ em $\;P\;$ centro da face $\;BCFE\;$ do cubo de diagonal (diâmetro) $\;A_0B_0\;$ construído cf (XIII.15).
      • (I.47) - Lembremos que o quadrado da diagonal de uma face do cubo é igual a dois quadrados do lado da face e o quadrado da Diagonal do cubo é a soma do quadrado da diagonal da face com o quadrado do lado face. Ou seja o quadrado da Diagonal do cubo (ou diâmetro da esfera em que se inscreve) é três vezes o quadrado dda sua aresta.
      • A reta $\;PX\;$ é a interseção dos planos que cortam ao meio duas faces opostas (dois planos opostos, como eles descreveram) do cubo ($\;BCE, \;ADI\;)$ e, por isso, cf (XI.38), interseta a Diagonal (diâmetro) do cubo no centro da esfera em que se inscreve o cubo. Chamámos $\;Z\;$ a esse ponto, como confirmará na nossa ilustração. $\;ZP\; é metade do lado da face do cubo.
    2. Para além de $\;Z\;$, temos $\;XZ, \; UZ, \;$ que nos permitirão provar que o vértice $\;U\;$ do dodecaedro é um ponto da esfera de centro em $\;Z\;$ e diâmetro igual a $\;A0B_0:\;$
      • Como já vimos $\;P\;$ divide $\;NS\;$ em média extrema razão, sendo $\;NP>PS\;$ e, cf (XIII.4), $$\;NS^2+SP^2=3NP^2$$
      • Os dados da construção que fomos descrevendo indicam que $\;NP=PZ\;$ e $\;XP=PS\;$. Por ser $\;XZ= XP+PZ, \;\;\; XZ= SP+PN= SN.\;$ Também $\;PS=PR\;$ e, por isso, $\;PS=XU.\,$ O triângulo $\;UZX\;$ é retângulo em $\;X\;$ e, cf (I.47), $\;ZU^2= ZX^2+xU^2.\;$ E podemos escrever que $$ZU^2 =NS^2+SP^2 = 3NP^2\;$$
      $UZ^2=3NP^2$ é o mesmo que dizer que $\;UZ\;$ é o raio da esfera em que está encapsulado o cubo de aresta $\;AB\;$ dupla de $\;NP\;$. (XIII.15 : o raio da esfera é três vezes o quadrado de lado igual a metade da aresta do cubo nela inscrito.)
      Fica assim demonstrado que o vértice $\;U\;$ do dodecaedro construído é um ponto da esfera em que se inscreve o cubo, cujos vértices estão sobre a superfície esférica e são também vértices do octaedro. Raciocínio análogo pode ser aplicado para a cada um dosvértices do dodecaedro que não seja vértice do cubo.
  3. Qual é o comprimento da aresta do dodecaedro inscrito numa superfície esférica de diâmetro $\;A_0B_0\;$?
    • $\;UV =RS\;$ já que $\;UV\;$ e $\;RS\;$ são segmentos de paralelas entre paralelas $\;RU\;$ e $\;SV\;$ (estas últimas construídas como perpendiculares ao plano $\;BEF\;$
    • Como sabemos $\;R\;$ foi determinado como ponto que divide $\;NP\;$ em média e extrema razão, sendo $\;RP>PN:\;$ $$\frac{NP}{PR}=\frac{PR}{RN}$$ E assim, como é óbvio, $\;\displaystyle \frac{2NP}{2PR}=\frac{2PR}{2RN}.\;$
    • $\;S\;$ foi determinado do mesmo modo que $\;R\;$ e óbvio é que $\;NP= PO,\; NR=SO, \; RP=PS\;$, sendo , por isso, $\;2NP=NO, \; 2NR =NR+SO, \; 2PR=RS, \; RS>2NR $
      E podemos escrever que $$\frac{NO}{RS}=\frac{RS}{2RN}$$ que se pode traduzir por $\;RS\;$ é a parte maior de uma divisão de $\;NO\;$ em média e extrema razão.


    Como $\;NO\;$ é igual à aresta do cubo $\;D_0B_0\;$, a aresta do dodecaedro inscrito numa esfera dada é igual à parte maior da aresta do cubo inscrito na mesma esfera quando a dividimos em média e extrema razão.


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

23.8.15

Elementos: Construir um icosaedro (Proposição 16 do Livro XIII)


Proposição 16:
Construir um iscosaedro
inscritível numa dada esfera.

Consideremos a esfera dada definida pela semicircunferência de diâmetro $\;AB\;$ a azul na figura em que também tomamos um ponto $\;C\;$ do diâmetro tal que $\;AC+CB=AB\;$ e $\;AC=4\times BC\;$ e um ponto $\;D\;$ da semicircunferência $\;ADB\;$ tal que $\; A\hat{C}D\;$ seja reto. Ficam traçados também a azul $\;CD, \;DB,\;$, este último presente em todos os passos da construção. Passos da construção:
  1. Tomamos uma circunferência de raio $\;DB\;$, e sobre ela, os pontos $\;E,\;F,\;G, \; H, \;K\;$ como vértices de um pentágono equiângulo e equilátero (IV.11). E determinemos os pontos $\;L, \;M, \;N,\;O,\;P, \;$ médios, respetivamente, dos arcos dessa circunferência $\;EF, \;FG,\; GH,\; HK,\; KE.\;$ Como $\;EFGHK\;$ é um pentágno equilátero, também $\;LMNOP\;$ é um pentágono equilátero e $\;ELFMGNHOKP\;$ é um decágono inscrito na mesma circunferência e também equilátero.
  2. Tomemos agora as retas passando por $\;E,\;F,\;G, \; H, \;K\;$ fazendo ângulos retos com o plano da circunferência $\;EFGHK\;$ e destas tomemos os segmentos $\;EQ, \;FR, \;GS, \;HT,\;KU, \;$ de comprimento $\;DB\;$ igual ao raio da circunferência $\;EFGHK.\;$ Desta circunferência, na nossa construção, designamos por $\;V\;$ o seu centro.
    A circunferência de raio $\;DB\;$ e centro em $\;W\;$ em que se inscreve $\;QRSTU\;$ está num plano paralelo ao plano de $\;EFGHK\;$ ou $\;LMNOP\;$, sendo $\;EQ=VW=VE=DB. \;$

    © geometrias. 2 de Setembro de 2015, Criado com GeoGebra

    Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)

    Tomemos os segmentos $\;QR,\; RS,\; ST,\; TU,\; UQ,\; QL,\; LR,\; RM,\; MS,\; SN,\; NT,\; TO,\;OU,\; UP,\; PQ,\; $ limitando 10 triângulos.
    Como $\;EQ, \;FR, \;GS, \;HT,\;KU, \;$ fazem ângulos retos com um mesmo plano, elas são paralelas e complanares duas a duas (XI.6) e de de igual comprimento. E segmentos de reta compreendidos entre paralelas do mesmo lado e iguais são elas próprias iguais e paralelas (I.33). Assim, $\;QU\;$ é igual e paralela a $\;EK,\;$ ou seja, $\;EK\;$ tem comprimento igual ao lado do pentágono equilátero e equiângulo inscrito na circunferência $\;EFGHK.\;$ Por isso, o pentágono $\;QRSTU\;$ é equilátero. Por outro lado, como $\;QE\;$ é o comprimento do lado do hexágono equilátero inscrito na circunferência $\;EFGHK,\;$ por ser igual ao seu raio $\;DB, \;$ e $\;EP\;$ é lado do decágono inscrito na mesma circunferência, sendo $\;Q\hat{E}P\;$ reto então $\;QP\;$ é igual ao lado do pentágono equilátero inscrito na mesma circunferência, já que o quadrado do lado de um pentágono é igual à soma dos quadrados dos lados do hexágono e do decágono inscritos na mesma circunferência (XIII.10). Pelas mesmas razões $\;PU\;$ será igual ao lado do mesmo pentágono e assim será $\;QU\;$, ou seja $\;QPU\;$ é um triângulo equilátero.
    E, como $\;QL^2=EL^2+QE^2,\; QL\;$ pode ser visto como lado do pentágono inscrito em $\;(I, DB), \;$ do qual $\;OP, \; \;LP,\;$ também podem ser vistos como lados, o triângulo $\;QLP\;$ é equilátero. E, pelas mesmas razões, são equiláteros os triângulos $\;LRM,\; MSN, \; NTO,\; OUP.\;$
    Como já tínhamos visto, $\;QRSTU\;$ é um pentágono equilátero de lados paralelos e iguais ao pentágono inicial $\;EFGHK\;$ e assim são equiláteros (por terem lados comuns aos dos triângulos anteriormente referidos de que são iguais) os triângulos $\; LQR, \;MRS, \;NST, \;OTU.\;$
  3. Sobre a reta que passa pelos centros $\;V,\; W\;$ das circunferências $\;EFGHK\;$ e $\;QRSTU\;$ (que fazem ângulos retos com os respetivos planos) tomem-se (para fora da faixa dos triângulos construídos) segmentos iguais ao lado $\;EP\;$ do decágono inscrito na circunferência $\;EFGHK\;$ com extremos $\;V,\;X\;$ e $\;W,\;Z.\;$ Como $\;VX\;$ é o lado do decágono e $\;VP\;$ é o lado do hexágono (raio), sendo $\;X\hat{V}P\;$ um ângulo reto, então $\;PX\;$ é o lado do pentágono. Do mesmo modo, se verifica que $\;LX = MX=NX=OX=PL\;$ são iguais entre si por serem iguais ao lado do pentágono regular inscrito em $\;(V, VP)\;$. E podemos concluir que são iguais entre si e equiláteros os triângulos $\;XLM, \;XMN, \;XNO, \;XOP, \;XPL,\;$ e iguais a $\;PQL, \ldots\;$
  4. De igual modo se provaria que são iguais aos anteriores os triângulos $\;ZQR, \;ZRS, \;ZST, \;ZTU, \;ZUQ.\;$

Temos assim um sólido limitado por uma superfície fechada composta por 20 triângulos iguais entre si e equiláteros, a saber
$\;XLM, \;XMN, \;XNO, \;XOP, \;XPL;\;\;ZQR, \;ZRS, \;ZST, \;ZTU, \;ZUQ;\; \;LRM,\; MSN, \; NTO,\; OUP,\;PQL;\;$ $ \; LQR, \;MRS, \;NST, \;OTU,\;PUQ,\;$ que são as 20 faces; de lados $\;XL, \;XM, \;XN,\; XO, \; XP; \;PL,\; LM, \;MN, \;NO, \; OP; \;PQ, \;QL, \;LR, \;RM,\;MS,\;SN,\;NT,\;TO,\;OU,\;UP;\;$ $\; QR,\;RS,\; ST,\;TU,\;UQ;\;QZ,\;RZ,\;SZ,\;TZ,\;UZ,\;$ que são as 28 arestas; cujos extremos são $\;V, \;L, \;M, \;N, \;O, \;P, \;Q, \;R, \;S, \;T, \;U, \;W,\;$ que são os 12 vértices do icosaedro.



Falta provar que este icosaedro está encapsulado (ou inscrito?) numa esfera gerada por um semicírculo de diâmetro $\;AB\;$:
Por construção, sabemos que $\;XV=WZ=PE,\; VW=DB\;$ (respetivamente lado do decágono e lado do hexágono regulares inscritos na mesma circunferência em que se inscreve o pentágono $\;EFGHK.\;$ Por isso, $\;VZ =VW+WZ\;$ é dividido pelo ponto $\;W\;$ em média e extrema razão (prop. XIII.9 : se os lados de um hexágono e de um decágono inscritos num mesmo círculo forem acrescentados um ao outro, obtém-se um segmento de reta que fica dividido em média e extrema razão pelo ponto de junção, sendo a parte maior o lado do hexágono) o que pode ser descrito por $$\; \displaystyle \frac{VZ}{VW}= \frac{VW}{WZ}.$$
  1. Consideremos os segmentos $\;ZE, \;EV, \;EX, \;$ para além de $\;XZ, \;XV,\;VW, \;WZ, \;VZ,\; $ os triângulos $\;ZVE, \;XVE,\;ZEX\;$ e os ângulos $\;Z\hat{V}E, \;X\hat{V}E,\;$ retos, por construção. Como $\;VW=VE=EQ=DB\; $ e $\;WZ=VX=PE,\;$ a expressão acima permite-nos escrever $\; \displaystyle \frac{VZ}{VE}= \frac{VE}{VX}\;$ relacionando lados dos triângulos $\;ZVE, \;XVE,\;ZEX\;$ que, por isso, os dois primeiros são triângulos retângulos em $\;V\;$ e o terceiro é retângulo em $\;E\;$ de altura $\;VE = DB\;$, semelhantes entre si (VI.8). O ponto $\;E\;$ é pois um ponto da semicircunferência de diâmetro $\;XZ\;$. A mesma semicircunferência passa por $\;Q\;$ (já que, obviamente e do mesmo modo, o triângulo $\;XQZ\;$ é retângulo em $\;Q\;$ e de hipotenusa $\;XZ\;$ e com $\;QW=DB.\;$ E, mantendo fixo o diâmetro (eixo) $\;XZ,\;$, a semicircunferência passará por todos os pontos angulares (vértices) do icosaedro construído, ao rodar em torno de $\;XZ.\;$
    Fica assim provado que o icosaedro construído está encapsulado numa esfera de diâmetro $\;XZ.\;$ Será esta esfera de diâmetro $\;AB ? \;$
    • Sabemos que $$\frac{VZ}{VW}= \frac{VW}{WZ} \Leftrightarrow VW^2 = VZ \times WZ $$ Consideremos o ponto $\;J\;$ médio de $\;VW\;$ que é também o ponto médio de $\;XZ=XV+VW+WZ\;$ já que $\;XV=WZ\;$. Prova-se que, sendo $\;VW\;$ o maior na divisão, por $\;W\;$ de $\;VZ\;$ em média e extrema razão, o quadrado do menor $\;WZ\;$ acrescentado de metade do maior $\;JW\;$ é 5 vezes o quadrado deste: $$(JW+WZ)^2 =5 \times JW^2$$ o que é fácil de verificar. (Assim: $\;VW=2\times JW, \;$ então $\;VW^2= 4\times JW^2 \;\;$ e, como antes tínhamos visto, $\;VW^2= VZ \times WZ.\;$ Conclui-se que $ \; 4\times JW^2 = VZ \times WZ. \;$ Como $\;VZ=VW+WZ \;$ e $\;VW=2\times JW,\;$ podemos escrever $ \; 4\times JW^2 = (VW+WZ)\times WZ = VW\times WZ +WZ^2 =2\times JW\times WZ+WZ^2,\;$ e, concluindo $JZ^2 = (JW+WZ)^2 = JW^2 + WZ^2 + 2JW\times WZ = JW^2+4\times JW^2 = 5\times JW^2.\;$)
      Sendo $\;JZ^2=5\times JW^2,\;$ como $\;XZ=2\times JZ \;$ e $\;VW= 2\times JW\;$, $\;XZ^2 = 5\times VW^2.\;$


    • Dos dados iniciais, lembramos um triângulo $\;ADB\;$ retângulo em $\;D\;$ e de hipotenusa $\;AB\;$, sendo $\;CD\;$ a altura a ela relativa e $\;C: AC=4CB.\;$
      São semelhantes entre si os triângulos retângulos $\;ABD, \;DAC, \;BDC\;$. Da semelhança $\;ABD \sim BDC\;$ retiramos $\; \displaystyle \frac{AB}{BD} = \frac{BD}{BC}\;$ ou $\;BD^2 = AB\times BC\;$.
      Como $\;AB =AC+CB\;$ e $\;AC=4\times CB, \; AB= 5\times BC ou \displaystyle BC = \frac{AB}{5}.\;$
      Podemos agora escrever que $\;5\times BD^2= AB^2.\;$ E como $\;VW=DB\;$, concluímos assim que $\;AB^2 = XZ^2\;$ e $\;AB=XZ.$
Fica assim demonstrado que o icosaedro construído está encapsulado numa esfera de diâmetro de comprimento $\;AB.\;$

  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

23.7.15

Relações entre tetraedro e cubo inscritos numa mesma esfera.


As construções do tetraedro (XIII.13) e do cubo(XIII.15) começam exatamente do mesmo modo:
  1. o diâmetro $\;AB\;$ da esfera em que ambos se inscrevem é dividido por um ponto $\;C\;$ de tal modo que $\;AC=2CB;\;$
  2. sobre um semicírculo com esse diâmetro $\;AB\;$ que gera a esfera, tomámos um ponto $\;D\;$ tal que $\;CD\;$ é perpendicular a $\;AB;\;$
  3. para o tetraedro inscrito, a aresta é $\;AD ;\;$
  4. para o cubo inscrito na mesma esfera, a aresta é $\;DB.\;$
Em (XIII.13) vimos que $\;AB^2=\displaystyle \frac{3}{2}AD^2\;$ e, em (XIII.15), vimos que $\;AB^2=3DB^2\;$. Em consequência, de $\;\displaystyle \frac{3}{2}AD^2 = 3DB^2\;$ se retira que $\;AD^2=2DB^2,\;$ ou seja que $\;AD\;$ é o comprimento da diagonal de um quadrado de lado igual a $\;DB\;$. Assim vimos que a aresta de um tetraedro inscrito numa esfera de diâmetro dado tem comprimento igual à diagonal da face do cubo inscrito na mesma esfera.

© geometrias. 23 de julho de 2015, Criado com GeoGebra

Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)

Na construção que se segue, pode ver-se um cubo de 8 vértices $\;E, \;F, \;G, \;H, \;K, \;L,\; M, \;N\;$ extremos de 12 arestas $\;EF, \;FG, \;GH, \;EK, \;KL, \;LF, \;KN, \;NM, \;ML, \;GM, \;HN \;$ que limitam 6 faces quadradas $\;[EFGH], \;[EFLK], \;[KLMN], \;[MNHG], \;[FGML].$
Conforme a construção feita, 4 dos vértices do cubo - $\;E, \; G, \;L, \;N\;$ - são vértices do tetraedro, extremos das suas 6 arestas $\;EG, \;EL \;EN, \; GL, \;LN, \;NG,\;$ cada uma diagonal de uma face do cubo, que limitam as 4 faces triangulares do tetraedro $\;EGL, \;ELN, \;ENG, \;GLN.\;$
Claro que os outros 4 vértices do cubo $\;F,\;H,\;K,\; M\;$ também são vértices de um tetraedro, extremos de outras diagonais das faces do cubo.

Aproveitamos para comparar os volumes dos tetraedro e cubo inscritos numa mesma esfera. Se do cubo removermos o tetraedro, sobram-nos quatro pirâmides iguais: por exemplo, $\;EGHN, \; $ de base $\;GHN\;$ triangular, que é (por XII.9) a terça parte do prisma de bases $\;EFK\;$ e $\;HGN\;$ triangulares iguais. Por sua vez, é óbvio que este prisma é meio cubo, logo cada uma dessas pirâmides sobrantes após a remoção do tetraedro é a sexta parte do cubo, e o conjunto delas representa quatro sextas partes. Vimos assim que o tetraedro representa duas sextas partes ou a terça parte do cubo em termos de volume.

  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

7.7.15

Elementos: Construção de um cubo inscritível numa dada esfera


Proposição 15:
Construir um cubo que se possa inscrever-se numa esfera dada e mostrar que o quadrado do diâmetro da esfera é triplo do quadrado da aresta do cubo nela inscrito.

Construção:
  1. Seja $\;AB\;$ o diâmetro de uma dada esfera (ou seja a esfera gerada pela revolução de um semicírculo em torno do seu diâmetro de comprimento $\;AB\;$)
  2. Dividimos $\;AB\;$ em dois segmentos $\;AC\;$ e $\;CB\;$ tais que $\;AC=2CB\;$
  3. Tiremos por $\;C\;$ uma perpendicular a $\;AB\;$ e, no mesmo plano, tomemos $\;D ,\;$ ponto de interseção dessa perpendicular com a semicircunferência de diâmetro $\;AB\;$
  4. Tracemos $\;CD\;$ e $\;DB.\;$ - $\;A\hat{C}D=D\hat{C}B = 1\;$ reto
  5. Tomámos depois um ponto $\;E\;$ e, a partir dele, construímos um quadrado $\;EFGH\;$ de lado igual a $\;DB\;$.
  6. Em seguida, tirámos por $\;E, \;F,\; G,\;H\;$ perpendiculares ao plano do quadrado $\;EFGH\;$ e, sobre cada uma delas, tomámos um ponto de modo a obtermos $\;EK, \;FL,\; GM,\; HN\;$ iguais a um dos segmentos $\;EF, \; FG,\;GH,\;FE.\;$
  7. Finalmente, desenhámos $\;KL,\;LM,\; MN,\;NK.\;$
Obtivemos assim um cubo, limitado pelos seis quadrados iguais $\;EFGH, \;KLMN, \;EFLK,\;FGML,\;GMNH, \;NHKE.\;$

Temos agora de provar que esse cubo tem os vértices sobre uma esfera de diâmetro $\;AB\;$ e que o quadrado de lado igual ao diâmetro da esfera é triplo do quadrado de lado igual à aresta do cubo.

© geometrias. 1 de julho de 2015, Criado com GeoGebra

Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)

Demonstração:
  1. Tomamos $\;KG\;$ e $\;EG.\;$Por construção $\;KE\;$ é perpendicular ao plano $\;EFG\;$ e é por isso, perpendicular a $\;EG\;$ - $\;K\hat{E}G\;$ é reto - o que quer dizer que a semicircunferência de diâmetro $\;KG\;$ passa por $\;E.\;$
    Como $\;GF\;$ faz ângulos retos com cada uma das retas $\;FL\;$ e $\;FE\;$, então $\;GF\;$ também faz ângulos retos com o plano $\;KEF\;$ e, por isso, também é reto o ângulo $\;G\hat{F}K.\;$ E, portanto a semicircunferência de diâmetro $\;KG\;$ também passará por $\;F\;$ na sua rotação em torno de $\;KG.\;$
    Iguais raciocínios nos permitem concluir que essa semicircunferência rodando em torno de $\;KG\;$ passará por todos os vértices do cubo construído.
    Assim, mantendo fixo $\;KG\;$ a semicircunferência em revolução passa pelas mesmas posições desde que iniciou a rotação, o que quer dizer que o cubo está compreendido numa esfera de diâmetro $\;KG.\;$
    Será que está compreendido na esfera dada?
    1. Como $\;GF=FE\;$ e $\;G\hat{F}E\;$ é ângulo reto, então $\;GE^2 =FG^2+FE^2 = 2\times EF^2.\;$ Mas como $\;EF=EK\;$ então $\;EG^2=2\times EF2\;$ e como o ângulo $\;G\hat{E}K\;$ é reto, então $\;KG^2= GE^2+EK^2\;$. Podemos concluir que $\;GK^2=2EF^2+EF^2=3EF^2\;$
    2. Por terem ângulos iguais, cada um a cada um, os triângulos $\;ADB\;$ e $\;BCD\;$, sabemos que $$\frac{AB}{DB}=\frac{DB}{BC} \; \; \; \text{que é o mesmo que} \; \; \; DB^2=AB\times BC$$ e, como $$\;\displaystyle \frac{AB}{BC}= \frac{AB\times AB}{AB\times BC}\;$$ sendo, por construção, $$\;\displaystyle \frac{AB}{BC}=3 \;\; \text{e}\;\; \frac{AB}{BC}=\frac{AB^2}{BD^2} \;\; \text{então} \;\; AB^2=3\times DB^2$$ Na Geometria de Euclides, este resultado aqui apresentado a partir algebricamente já foi demonstrado antes por métodos geométricos....
    3. /ol> Fica assim provado que, por ser $\;EF=DB\;$ e $\;AB^2=3\times DB^2$ podemos concluir que $\;AB^2= GK^2\;$ e $\;AB=GK.$ Ou seja o cubo construído é inscritível numa esfera de diâmetro $\; AB\;$ dado.
              □


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements

1.7.15

Livro XIII: Construção de um octaedro inscrito numa esfera dada


Proposição 14:
Construir um octaedro inscrito numa esfera dada e mostrar que o quadrado do diâmetro da esfera é o dobro do quadrado da aresta do octadedro nela inscrito.
Passos da construção:
  1. Tomámos um segmento $\;AB\;$ para eixo de um semicírculo gerador da esfera.
  2. Determinámos um ponto $\;C \;$ de $\;AB\;$ tal que $\;AC=CB\;$
  3. Assinalámos $\;D\;$ na interseção da perpendicular a $\;AB\;$ tirada por $\;C\;$ com o semicírculo de diâmetro $\;AB \;$. Traçámos o segmento de reta $\;DB\;$
  4. Prolongámos $\;CD\;$ e tomámos sobre essa a reta, a partir de $\;C\;$ em sentido oposto ao de $\;D,\;$ um segmento de comprimento igual $\;AB\;$ e uma circunferência com esse segmento para diâmetro.
  5. No caso da nossa construção, tomámos um ponto $\;E\;$ dessa circunferência e nela inscrevemos um polígono $\;EFGH\;$ tais que $\;EF = EG = FG=GH=DB\;$. Podíamos ter tomado um outro quadrado de lado igual a $\;DB\;$ em qualquer lugar do espaço. As opções tomadas só têm a ver com aspeto e tamanho da nossa construção.
  6. Sendo $\;K\;$ o centro da circunferência, tirámos uma perpendicular ao plano da circunferência $\;(EFGH)\;$ e sobre ela tomámos $\;L\;$ e $\;M,\;$ um de cada lado do plano de $\;(EFGH)\;$, tais que $\;KL=KM=KE=KF=KG=KH\;$
  7. Os 6 pontos $\;E,\;F,\;G,\;H,\;L,\;M\;$ serão vértices de um sólido de 8 faces triangulares $ \;LEF,\;LFG,\;LGH, \;LHE,\;MEF, \;MFG, \;MFH, \; MHE,\;$ que duas a duas se intersetam em alguma das 12 arestas $\;EF, \;FG, \;GH, \;HE, LE,\;LF,\;LG,\;LH,\;ME, \;MF,\;MG,\;MH.\;$ Traçamos tais arestas e faces.
Demonstraremos que o sólido construído é o octaedro requerido e que o quadrado do diâmetro da esfera é o dobro do quadrado da aresta do octaedro inscrito na esfera.

© geometrias. 1 de julho de 2015, Criado com GeoGebra

Nota: Pode utilizar as ferramentas (topo esquerdo - para deslocar a figura e vê-la de vários pontos de vista; topo direito - para desfazer ou refazer transformações da figura)

Demonstração:
  1. Por construção, $\;EFGH\;$ é um quadrado de lado igual a $\;DB.\;$E $\;EK=FK=GK=HK=KL=KM\;$ sendo iguais os ângulos $\;L\hat{K}E = M\hat{K}E = L\hat{K}F =M\hat{k}F = … = \;$1 reto. Por isso, $\;EK^2=LK^2, \; \; EL^2= 2\times EK^2. \;$ Do mesmo modo, $\;EH^2=2 \times EK^2\;$ e, por isso, $\;EL=EH\;$. Pelas mesmas razões, $\;LH = HE.\;$. Assim, podemos concluir que o triângulo $\;LEH\;$ é equilátero.
    Podemos concluir que são equiláteros todos os restantes triângulos cujas bases são os lados do quadrado $\;EFGH\;$ e o terceiro vértice opostos de cada base é $\;L\;$ ou $\;M\;$. Isto quer dizer que construímos um sólido cujas faces são triângulos equiláteros iguais, ou seja, é um octaedro o que construímos.
  2. Falta-nos provar que os vértices do octaedro construído são pontos da superfície esférica de diâmetro igual a $\;AB.\;$ Assim provamos a seguir:
    1. Por construção, $EF=FG=GH=HE=DB$ e, como vimos, os triângulos de bases $\;EFL, \;FGL, \;GHL, \;HEL, \: EFM, \;FGM, \;GHM, \;HEM, \: $ são equiláteros de lados iguais a $\;DB.\;$
    2. Como $\;LK, \;KM,\;KE\;$ são iguais, a semicircunferência desenhada de diâmetro $\;LM\;$ também passa por $\;E.\;$ E pela mesma razão, o semicírculo rodando em torno de $\;LM\;$ fixo também passa pelos pontos $ \;F, G, H\;$ e o octaedro terá os seus vértices numa esfera de diâmetro $\;LM.\;$
    3. E dado que $\;LK=KM\;$ e $\;KE\;$ comum nos triângulos $\;LKE\;$ e $\;MKE\;$ ambos retângulos em $\;\hat{K}\;$, $\;LE=EM\;$
    4. E como, por construção $\;L\hat{E}M\;$ é reto por estar inscrito num semicírculo de diâmetro $\;LM, \;$ então $\;LM^2= 2 \times LE^2\;$
    5. E como, por construção, o triângulo $\;ADB\;$ é retângulo em $\; \hat{D}\;$ (inscrito no semicírculo) e $\;AD=DB\;$ então $\;AB^2=AD^2+DB^2, \;$ de onde retiramos que $AB^2=2\times DB^2$
    6. Por ser, como vimos, $\;LE =DB\;$, podemos dizer que $\;AB^2=LM^2= 2 \times LE^2$, de onde se conclui:
      $\;AB=LM\;\;$ e $\;\;AB^2 = 2 \times LE^2$
    Fica assim provado que a semicircunferência de diâmetro $\;LM\;$ gera uma esfera (a passar pelos vértices do octaedro construído) congruente com esfera dada - gerada pela semicircunferência de diâmetro $\;AB.\;$
    e também ficou provado que o quadrado de lado igual ao diâmetro de uma esfera dada é igual ao quadrado de lado igual à aresta do octaedro nela inscrito.           □


  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements