Mostrar mensagens com a etiqueta Elementos. áreas. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta Elementos. áreas. Mostrar todas as mensagens

27.5.16

Quadratura de um par de garras (de Leonardo)




Usando noções comuns, definições e teoremas de "Os Elementos" de Euclides,
determinar um quadrado com a mesma área da figura preenchida a vermelho $\;-\;\fbox{n=1}\;-\;$ limitada exteriormente por 2 arcos de circunferências iguais (três quartos de uma e um quarto de outra) e interiormente por uma circunferência tangente aos dois arcos referidos.
Fazendo variar os valores de $\;\fbox{n}\;$ no cursor do topo à esquerda, pode seguir os passos da resolução/demonstração.




©geometrias, 26 maio 2016, Criado com GeoGebra




$\fbox{n=2}\;\;\;\;$ As duas circunferências iguais são centradas em $\;O\;$ e em $\;E\;$ e ambas a passar por $\;A\;$ e por $\;D.\;$ Os seus
$\;\;\;\;\;\;\;\;\;\;\;\;$arcos, que limitam exterioremente a figura dada, são $\;\widehat{DGA}\;$ da circunferência $\;E_A\;$ e $\;\widehat{AJD}\;$ de $\;O_A ,\;$ sendo
$\;\;\;\;\;\;\;\;\;\;\;\;$obviamente $\;\angle D\hat{O}A\;$ um ângulo reto.
$\;\;\;\;\;\;\;\;\;\;\;\;$ A circunferência $\;M_G\;$ que limita interioramente a figura é tangente em $\;G\;$ a $\;\widehat{DGA}\;$ e em $\;J\;$ a $\;\widehat{AJD}, \;$
$\;\;\;\;\;\;\;\;\;\;\;\;$ sendo $\;GJ\;$ um dos seus diâmetros.
$\fbox{n=3}\;\;\;\;$ O quadrilátero $\;AODE\;$ é um quadrado por ser equilátero $\;AO=OD=DE=EA\;$ (raios de circunferências
$\;\;\;\;\;\;\;\;\;\;\;\;$ iguais) e equiângulo (ângulos retos por construção e por serem os raios de uma tangentes à outra)
$\fbox{n=4}\;\;\;\;$ Também são quadrados (e iguais) $\;ABCD\;$ e $\;DLKA,\;$ de lado $\;DA\;$ inscritos respetivamente em $\;O_A\;$ e
$\;\;\;\;\;\;\;\;\;\;\;\;$ $\;E_A .\;$ Como $\;AOD\;$ é um triângulo isósceles e retângulo em $\;O, \;$ $\;AD^2= 2\times AO^2, \;$ que é o mesmo que
$\;\;\;\;\;\;\;\;\;\;\;\;$ dizer que a área de $\;ABCD\;$ é dupla da área de $\;AODE.\;$
$\fbox{n=5}\;\;\;\;$ O círculo $\;M_G\;$ é igual (e igual em área) ao círculo $\;O_H\;$ inscrito no quadrado $\;ABCD\;$ sendo o seu raio
$\;\;\;\;\;\;\;\;\;\;\;\;$metade do lado $\;AB\;$ do quadrado a ele circunscrito.
$\;\;\;\;\;\;\;\;\;\;\;\;$Como $\;HE = HO = AH = HD, \;$ o quadrado $\;AODE\;$ é igual em área a um qualquer quadrado inscrito
$\;\;\;\;\;\;\;\;\;\;\;\;$ em $\,O_H\;$ ou em $\;M_G .\;$ Como a razão das áreas dos quadrados inscritos nas circunferências $\;O_A\;$ e $\;O_H\;$ é
$\;\;\;\;\;\;\;\;\;\;\;\;$de 1 para 2, também a razão entre as áreas dos círculos $\;O_H\;$ e $\;O_A\;$ é de 1 para 2 e a coroa circular limitada
$\;\;\;\;\;\;\;\;\;\;\;\;$por esses dois círculos tem área igual à do círculo menor $\;O_H\;$ ou do círculo $\;M_G .\;$
$\;\;\;\;\;\;\;\;\;\;\;\;$ Vimos assim que se ao círculo de centro $\;O\;$ que passa por $\;A\;$ subtrairmos o círculo de centro $\;M\;$ que
$\;\;\;\;\;\;\;\;\;\;\;\;$ passa por $\;G\;$, restar-nos-á uma área igual à deste último círculo (que é em área é metade do primeiro.
$\;\;\;\;\;\;\;\;\;\;\;\;$ Mas não chega. Para termos como resto a nossa figura vermelha, além de subtraírmos ao círculo $\;O_A\;$ o
$\;\;\;\;\;\;\;\;\;\;\;\;$círculo $\;M_G\;$ é preciso retirar $\;(AGDIA)\;$ ou $\;|AHDIA) + (AGDHA|\;$
$\fbox{n=6}\;\;\;\;$ Na entrada anterior, já vimos que a relação que existe entre as áreas destes bocados tracejados (entre cada
$\;\;\;\;\;\;\;\;\;\;\;\;$lado do quadrado inscrito numa circunferência e a circunferência) se relacionam na mesma razão existente
$\;\;\;\;\;\;\;\;\;\;\;\;$entre as áreas dos quadrados inscritos. No caso. como a área de $\;O_A\;$ é dupla da área de $\;M_G\;$, então
$\;\;\;\;\;\;\;\;\;\;\;\;$$\;|AHDIA)\;$ vale dois dos bocados tracejados ente o quadrado $\;GSJT\;$ e a circunferência $\;M_G.\;$ O outro
$\;\;\;\;\;\;\;\;\;\;\;\;$bocado $\;(AGDHA|\;$ que é preciso retirar ainda ao $\;O_A\;$ vale os outros dois bocados entre $\;GSJT\;$ e $\;M_G\;$
$\fbox{n=7}\;\;\;\;$ Subtraímos ao círculo $\;O_A\;$ o círculo $\;M_G\;$ e ficámos com uma área igual à do círculo $\;M_G .\;$ Para termos
$\;\;\;\;\;\;\;\;\;\;\;\;$uma área igual à nossa figura inicial é ainda preciso subtrair a $\;M_G\;$ o equivalente a $\;(AGDIA),\;$ o que
$\;\;\;\;\;\;\;\;\;\;\;\;$ fizemos. O que sobrou foi um quadrado de lado igual ao raio $\;OA\;$ do círculo maior $\;O_A\;$
$\;\;\;\;\;\;\;\;\;\;\;\;$ □



  1. EUCLID’S ELEMENTS OF GEOMETRY The Greek text of J.L. Heiberg (1883–1885) from Euclidis Elementa, edidit et Latine interpretatus est I.L. Heiberg, in aedibus B.G. Teubneri, 1883–1885 edited, and provided with a modern English translation, by Richard Fitzpatrick
  2. David Joyce. Euclide's Elements
  3. George E. Martins. Geometric Constructions Springer. New York; 1997
  4. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2002
  5. Howard Eves. Fundamentals of Modern Elementary Geometry Jones and Bartlett Publishers, Boston: 1991.

22.2.15

Elementos: igualdade de "conteúdos" de triângulos.


Transcrevemos do Livro I de "Os Elementos"1 o enunciado e demonstração da proposição Pr. 37.1 que trata da igualdade de dois triângulos, no mesmo sentido da Pr. 35.1, apresentado para paralelogramos na entrada anterior. Estes resultados que tratam de apresentar condições em que duas figuras são iguais ("em área ou conteúdo") usando o método de "corta e cola" - remover e juntar figuras de ou a outras figuras - processo puramente geométrico.

PROP. XXXVII. TEOR.

Os triângulos, que estão postos sôbre a mesma base, e entre as mesmas paralelas, são iguais.

© geometrias. 21 de Fevereiro 2015, Criado com GeoGebra

Fazendo variar o valor de $\;n\;$ (no selector no centro ao fundo da janela de construção) verá o desenvolvimento da figura relativa à demonstração.

Os triângulos ABC, DBC, estejam postos sôbre a mesma base BC, e entre as mesmas paralelas AD, BC. Digo que os triângulos ABC, DBC são iguais.

Produza-se AD de uma e outra parte para E, e F, e pelo ponto B tire-se BE paralela a CA, e pelo ponto C tire-se CF paralela a BD (Pr. 31.1.*). Logo, EBCA, DBCF serão dois paralelogramos. Mas êstes paralelogramos são iguais (Pr. 35. 1.**), por estarem sôbre a mesma base BC, e entre as mesmas paralelas BC, EF; e o triângulo ABC é a metade (Pr. 34.1.***) do paralelogramo EBCA, que fica dividido em duas partes iguais pela diagonal AB, como também o triângulo DBC é a metade do paralelogramo DBCF, que é dividido em duas partes iguais pela diagonal DC. Logo, será o triângulo ABC = DBC, outro triângulo, porque as metades de quantidades iguais são também iguais (Ax. 7.****). □

*PROP. XXXI. PROB.

De um ponto dado conduzir uma linha reta paralela a outra linha reta dada
**PROP. XXXV TEOR.

Os paralelogramos que estão postos sobre a mesma base, e entre as mesmas paralelas, são iguais.
***PROP. XXXIV TEOR.

Os lados e os ângulos opostos dos espaços formados com linhas paralelas, ou paralelogramos, são iguais; e todo o espaço paralelogramo, fica dividido pela diagonal em duas partes iguais
****AXIOMA VII
VII. E aquelas, que são metades de uma mesma quantidade, são também iguais..

  1. Euclides. Elementos de Geometria dos seis primeiros livros do undécimo e duodécimo da versão latina de Frederico Commandino , Adicionados e Ilustrados por ROBERTO SIMSON, Prof de Matemática na Academia de Glasgow. Revistos para Edições Cultura por ANÍBAL FARO. Edições Cultura. São Paulo (BR): 1944
  2. Robin Hartshorne. Geometry: Euclid and beyond Springer. New York: 2000