4.8.17

Uma superfície limitada por três arcos circulares equivalente a um quadrado.

Uma superfície limitada por três arcos circulares equivalente a um quadrado.
Uma superfície de gumes circulares equivalente a um quadrado

Apresentamos a seguir uma construção dinâmica a ilustrar a equivalência de um quadrado a uma superfície limitada por arcos de circunferências.
Tomamos um quadrado $\;ABCD\;$ e uma das diagonais, por exemplo, $\;BD\;$ e consideremos o arco $\;BD\;$ de centro em $\;A\;$ e os arcos $\;BGA\;$ - de diâmetro $\;AB,\;$ centro $\;E\;$ - e $\;AGD\;$ - de igual diâmetro $\;DA,\;$ e centro em $\;F\;$. Estes três arcos circulares limitam uma superfície (a vermelho na figura abaixo)
O enunciado do problema desta entrada é:
Demonstrar que a superfície a vermelho na figura é igual em área a um quadrado de lado $\;\displaystyle\frac{AB}{2}\;$ (um quarto do quadrado $\;ABCD)\;$.

Nota Daqui para a frente, por exemplo, estamos a usar $\;E, \widehat{AGB}\;$ para designar o semicírculo de diâmetro $\;AB\;$ ou $\;(A, \hat{BD})\;$ o arco de centro $\;A\;$ de extremos $\;B, \;D\;$ (quarto de circunferência na figura). Para além da superfície que estudamos, apresentam-se inicialmente retas, segmentos e arcos que ajuda a compreender a construção e permitem determinar a sua área da superfície em estudo ou a compará-la com outras áreas. Partimos dos seguintes dados:
  • $\;ABCD\;$ são vértices de um quadrado;
  • As diagonais $\;BD\;$ e $\;AC\;$ são perpendiculares e bissectam-se.
  • O arco $\;\hat{BD}\;$ é um quarto da circunferência de raio igual ao lado do quadrado $\;ABCD\;$. O quarto do círculo correspondente tem área $$\; \frac{\pi\times AB^2}{4}\;$$
  • Os arcos $\;\widehat{AGB}\;$ e $\;\widehat{AGD}\;$ das circunferências de diâmetros $\;AB\;$ e $\;AD\;$ são semicircunferências iguais. A área de cada um doss semicírculos correspondentes às semicircunferências é $$\; \pi \times \frac{\left(\frac{ AB}{2}\right)^2}{2} = \frac{\pi \times AB^2}{8},\;$$ metade da área do quarto de círculo de raio $\;AB.\;$

3 agosto 2017, Criado com GeoGebra

  • Por isso $$\mbox{Área de} (E,\widehat{AGD})+\mbox{Área de} (F,\widehat{AGB})=\mbox{Área de} (A,\widehat{AB}),$$ $$(A,\widehat{AB})\setminus(F,\widehat{AGB})= (E, \widehat{AGD}) $$ Também sabemos que $\; (F, \widehat{AG}) = (F,\widehat{GD})= (E, \widehat{AG}) = (E, \widehat{GB})$. Basta agora olhar para $\;(F,\widehat{AGA});$ no lugar de $\;(E, \widehat{BGB})\;$ para vermos que o semicírculo de centro em $\;E\;$ e raio $\; \displaystyle \frac{AB}{2}= AE=EB=EG\;$ é assim composto: $$\;(E, \widehat{GAG}) \cup \;(E, \widehat{BGB}) \cup \Delta[BGA] \;$$ de conjuntos disjuntos igual à metade do quarto de círculo que contém toda a superfície vermelha acrescentada de um triângulo de base $\;AB\;$ e respectiva altura $\;EG\;$ cuja área é $$\frac{AB \times EG}{2} = \frac{\left(AB \times \displaystyle \frac{AB}{2}\right)}{2} = \left(\frac{AB}{2}\right)^2$$ de um quadrado de lado igual a metade do lado do quadrado $\;ABCD.\;$
    • Usando o botão [mover peças], verá que a nossa superfície vermelha é equivalente à parte do círculo $\;(A, AB)\;$ entre a corda $\;[AB]\;$ e o arco $\;\widehat{AB}\;$ e que esta é igual em área ao quadrado de vértices $\;A, G\;$ opostos que também se pode ver quando a animação é concluída.


      Cluzel, R.; Robert, J-P. La Géometrie et ses applications. (Enseignement Technique) Librairie Delagrave. Paris: 1964
      Caronnet, Th. Éxércices de Géométrie -quatrième livre: Les Aires 4. éd.,Librairie Vuibert. Paris:1947

Sem comentários: