8.3.14

Usando lugares geométricos para resolver problemas de construção (8)


Problema:Construir um triângulo de que se conhecem um ângulo, o lado a ele oposto e a mediana relativa ao lado conhecido.

Na construção a seguir, apresentamos os passos da resolução do problema de construção..
1.
Dados: dois pontos $\;B\;C\;$,segmento $\;a=BC\;$,comprimento da mediana $\;m_{BC}$, ângulo de amplitude $\;\alpha\;$.
2.
A resolução do problema resume-se a encontrar pontos $\;A\;$ , 3º vértice do triângulo $\;ABC\;$ de que se conhecem $\;B,\;C\;$, sabendo que $\;\angle B\hat{A}C\;$ terá de ser igual a $\;\alpha\;$ e $\;AM_{BC}=m_{BC}\;$
  1. O 5º lugar geométrico da lista diz-nos que os pontos, dos quais partem retas para os extremos $\;B,\;C\;$ de um segmento fazendo um ângulo $\;\alpha\;$, estão sobre dois arcos congruentes de duas circunferências com uma corda - $\;a=BC\;$ - comum.
  2. O lugar geométrico dos pontos à distância $\; m_{BC}\;$ de $\;M_{BC}\;$, ponto médio de $\;BC\;$, estão na circunferência de centro $\;M_{BC};$ e raio $\; m_{BC}\;$ (1º lugar geométrico da lista)


© geometrias, 8 de Março de 2014, Criado com GeoGebra


3.
A interseção dos lugares geométricos (5º e 1º, para os dados do problema) são os pontos $\;A, \; \; A_1 ,\; A_2 ,\; A_3\;$.
Há, em consequência, quatro triângulos $\;ABC, \; \; A_1 BC ,\; A_2 BC,\; A_3 BC\;$, a vermelho na figura, que satisfazem as condições requeridas

Sem comentários: