A não perder:
EDUARDO VELOSO, Uma curva de cada vez..
O caracol de Pascal,
Educação e Matemática, revista da A.P.M, nº 138: 2016
História da Matemática, Curvas, Ferramentas, Tecnologia: para estudar e construir.

9.11.10

Lugar da interseção das diagonais de um trapézio inscrito num triângulo

É dado um triângulo ABC. Traça-se uma paralela qualquer a BC e sejam B' e C' os seus pontos de interseção com os lados AB e AC. Qual é o lugar dos pontos P de interseção das retas BC' e CB'?


8.11.10

Triângulo: Pé da bissectriz de um ângulo com um lado fixo

O triângulo ABC tem os vértices A e B fixos, o vértice C descreve uma circunferência de raio dado e centro A. Qual é o lugar do pé da bissetriz do ângulo A?




O lugar geométrico do pé da bissectriz de A quando C percorre uma circunferência centrada em A e raio dado é uma circunferência. Como determina o seu centro?

5.11.10

Uma circunferência que roda e as tangentes com uma dada direção

Uma circunferência roda em torno de dos seus pontos. Em cada posição traçamos tangentes paralelas a uma reta fixa dada. Qual é o lugar dos pontos de tangência?



A circunferência c roda em torno de P (um dos seus pontos). Para cada posição de c' há duas tangentes (t1 e t2) a c' paralelas a r (reta dada) e dois pontos de tangência (T1 e T2), cada um deles descrevendo a sua circunferência. Onde estarão os centros destas circunferências?

4.11.10

Trapézio com elementos fixos, lugar geométrico da interseção das diagonais

Determinar o lugar dos pontos de interseção das diagonais de um trapézio em que um dos lados não paralelos é fixo e cujas bases têm comprimentos dados.



A animação da figura é feita de tal modo que se mantém rígido, na sua posição, o lado AD e se mantêm invariantes os comprimentos das bases bem como a sua direção. (Não sugere uma rotação no espaço em torno do lado AD?)
Nessa animação, o ponto de interseção das diagonais percorre uma circunferência. Isso significa que, para além do lado AD, há um ponto fixo (o centro da circunferência). Que ponto é esse e qual a sua posição relativamente aos elementos do trapézio?

Mais lugares geométricos básicos (Th. Caronnet)

  1. Determinar o lugar dos pontos de intersecção das diagonais de um trapézio em que um dos lados não paralelos é fixo e cujas bases têm comprimentos dados.
  2. Uma circunferência roda em torno de dos seus pontos. Em cada posição traçamos tangentes paralelas a uma reta fixa dada. Qual é o lugar dos pontos de tangência?
  3. O triângulo ABC tem os vértices A e B fixos, o vértice C descreve uma circunferência de raio dado e centro A. Qual é o lugar do pé da bissetriz do ângulo A?
  4. É dado um triângulo ABC. Traça-se uma paralela qualquer a BC e sejam B' e C' os seus pontos de interseção com os lados AB e AC. Qual é o lugar dos pontos M de interseção das retas BC' e CB'?
  5. Considere-se duas retas paralelas r e s e um ponto P. Por P traça-se uma secante fixa que encontra r em A e s em B e uma secante de direção variável que encontra r em A' e s em B'. Qual é o lugar dos pontos de interseção das retas AB´e BA'?
  6. Consideremos todos os retângulos inscritos num triângulo dado ABC e tendo um lado sobre BC. Qual é o lugar de interseção das sua diagonais?
  7. Seja o trapézio ABCD em que A e B são fixos, os lados paralelos têm comprimentos dados, AD=a e BC=b. Determinar o lugar dos pontos de interseção das diagonais quando o trapézio roda em torno do lado AB.
  8. Qual é o lugar dos pontos de que se vêm dois círculos sob o mesmo ângulo?

3.11.10

Lugar dos pontos de tangência em lado variável de ângulo de duas rectas

É dado um ângulo XÔY e um ponto A sobre OX. Seja c uma circunferência tangente a OX em A e a OY em B. Qual é o lugar dos pontos B quando OY roda com O fixo?


2.11.10

Ponto das tangentes a uma circunferência

Num ponto A de uma circunferência c traça-se a tangente à curva. Sobre a tangente tomam-se os pontos M e M' simétricos em relação a A. Qual é o lugar dos pontos M e M' quando A percorre a circunferência?




1.11.10

A circunferência reflectida numa das suas tangentes

São dadas uma circunferência c e a tangente t num ponto T da circunferência. Seja M' o simétrico de M em relação a t. Qual o lugar dos pontos M' quando M percorre a circunferência?


31.10.10

Euclides. Elementos, Livro VI - Proposição XXXIII C

A Mariana trouxe das leituras dos seus "Elementos de Euclides" a útlima proposição do Livro VI. Aqui fica uma construção dinâmica, acompanhada de resultados particulares para a figura (que pode fazer variar) e da demonstração copiada do papelinho que ela apresentou ao Lugar Geométrico.
António Aurélio interessou-se pelo tipo de problema e demonstração e logo apresentou outros resultados. O maquinista ainda disse que não era costume do blog, mas não parece ter comovido nenhum dos sentados no LUGAR. Sem poder vencê-los, junta-se a eles. Por isso, é bem possível que, na senda destes, outros resultados venham a ser publicados acompanhados de demonstrações. O futuro dirá.

Proposição:
Seja um qualquer triângulo, ABC, inscrito numa circunferência de raio r. Chamamos aos lados a=BC, b=AC e c=AB e ha à altura relativa a a tirada de A. Nestas condições, prova-se que bc=2rha.





29.10.10

Circunferências tangentes a retas dadas

Determinar o lugar dos centros das circunferências de raio dado, tangentes a uma reta dada.




O lugar geométrico dos centros das circunferências tangente a uma recta r é uma recta paralela a r distanciada dela o raio dado.


Qual é o lugar geométrico dos centros das circunferências tangentes a duas retas dadas?




Os centros das circunferências tangentes a duas retas r e s são equidistantes de r e s e, por isso, o seu lugar geométrico é a bissetriz do ângulo das duas rectas. Se r e s forme paralelas, o lugar geométrico é uma recta paralela às duas.

27.10.10

O mesmo da última entrada, experimentando com Geogebra

Experimentámos, usando GeoGebra, determinar a recta que passa por A e corta uma circunferência em dois pontos C e D equidistantes do ponto B dado.
Movimentando D sobre a circunferência, pode encontrar a recta que interessa. Explique porque é essa. Faça a sua construção com as ferramentas disponíveis e verifique.


26.10.10

Retas, circunferências e cordas

Um exercício interactivo sobre enunciado da lista de outros lugares geométricos:

São dados os pontos A e B e a circunferência c. Traçar por A uma reta que intersete c nos pontos C e D equidistantes de B.



25.10.10

O quinto básico lugar geométrico

O quinto enunciado da lista de exercícios da lista lugares geométricos básicos é:
São dadas duas circunferências de centros O e O’ e raios r e r’. Traçamos dois raios r e r’ paralelos e com o mesmo sentido. Qual é o lugar geométrico dos pontos médios M dos segmentos AA’ quando A e A’ se deslocam sobre as circunferências?

Aqui fica uma resolução que pode confirmar, com uma resolução autónoma. O que aconteceria se os raios não tivessem o mesmo sentido? Onde estará o centro da circunferência que passa por M?



23.10.10

O sexto básico lugar geométrico da lista

Qual é o lugar geométricos dos pontos M médios das cordas de uma circunferência c que têm um comprimento dado s?

Fazendo pausa na animação e com as ferramentas disponíveis, pode determinar o lugar geométrico pedido e verificando que coincide com o da figura.



19.10.10

Centros da circunferência de raio dado a passar por um ponto

Vamos apresentar uma animação referente ao exercício 1 da lista de lugares geométricos básicos publicada em 11/10/2010.
Seja O o centro de uma circunferência que passa por A e tem raio r.
O conjunto dos pontos O à mesma distância de A é uma circunferência de centro O e raio r.
Reciprocamente, se O' é um ponto qualquer da circunferência de centro A e raio r, O'A = r e O' é centro de uma circunferência com o mesmo raio que passa por A.
O lugar pedido é a circunferência de centro A com o raio r.



18.10.10

Outros lugares geométricos básicos

  1. São dados os pontos A e B e a circunferência c. Traçar por A uma reta que intersete c nos pontos C e D equidistantes de B.
  2. Determinar o lugar dos centros das circunferências de raio dado, tangentes a uma reta dada.
    Qual o lugar das circunferências tangentes a duas retas dadas?
  3. São dadas uma circunferência c e a tangente t num ponto A da circunferência. Seja M' o simétrico de M em relação a t. Qual o lugar dos pontos M' quando M percorre a circunferência?
  4. Num ponto A de uma circunferência c traça-se a tangente à curva. Sobre a tangente tomam-se os pontos M e M' simétricos em relação a A. Qual o lugar dos pontos M e M' quando A percorre a circunferência?
  5. É dado um ângulo XOY e um ponto A sobre OX. Seja c uma circunferência tangente a OX em A e a OY em B. Qual o lugar dos pontos B quando OY roda com O fixo?

Todos estes enunciados que têm sido e serão publicados são retirados de "Éxércices de Géométrie" de Th. Caronnet (Vuibert, Paris: 1947)

17.10.10

Lugares geométricos básicos - outra solução

O terceiro enunciado da lista de exercícios sobre lugares geométricos básicos é:
São dados uma circunferência c um segmento de reta AA’. Por cada ponto M da curva traça-se um segmento MM’ com o mesmo comprimento de AA’, paralelo e com o mesmo sentido. Qual é o lugar dos pontos M’?
Aqui fica resolvido.


15.10.10

Lugares geométricos parecidos

Na lista de exercícios sobre lugares geométricos básicos é apresentado o seguinte:

Qual é o lugar geométrico dos pontos G de intersecção das medianas de um triângulo cujo lado BC é fixo e cuja mediana AMa tem um dado comprimento l?

que pode ser associado ao resultado apresentado antes, nas entradas intervalo para esclarecimentos sobre lugares geométricos e notas sobre lugares geométricos que tratavam, entre outros do lugar geométrico dos baricentros dos triângulos com um mesmo circuncírculo em que dois vértices são fixos e outro ocupa qualquer posição sobre o circuncírculo.

Tem algum interesse ver que conjecturas se fazem para o primeiro resultado e para este novo lugar geométrico.

Nesta entrada, tratamos da generalização.

Pode parar a animação e pode mudar o comprimento da mediana.


12.10.10

Circunferência, recta e mediatriz - soluções.

Quando publicámos o problema interativo que consistia em determinar dois pontos - um C sobre uma circunferência c e outro S sobre a reta s - de tal maneira que a reta r fosse a mediatriz do segmento CS, esperávamos que a solução fosse encontrada de uma única maneira usando as rectas. Assim:





Rapidamente chegámos à conclusão que havia solucionadores que partiam da circunferência. Determinavam em primeiro lugar o simétrico O' de O relativamente a r e com centro em O' a refletida c' da circunferência c. Para concluir que as interseções de s com c' e os seus simétricos em relação a r dão as soluções.




(seguindo o Acordo Ortográfico)

11.10.10

Lugares geométricos básicos

Perguntas simples para respostas simples:
  1. Qual é o lugar geométrico dos centros das circunferências que passam por um ponto dado A e têm um raio dado r.
  2. Qual é o lugar geométrico dos pontos G de intersecção das medianas de um triângulo cujo lado BC é fixo e cuja mediana AMa tem um dado comprimento l?
  3. São dados uma circunferência c um segmento de reta AA’. Por cada ponto M da curva traça-se um segmento MM’ com o mesmo comprimento de AA’, paralelo e com o mesmo sentido. Qual é o lugar dos pontos M’?
  4. Qual é o lugar geométrico dos pontos médios dos segmentos definidos por um ponto A e os pontos de uma circunferência c.
  5. São dadas duas circunferências de centros O e O’ e raios r e r’. Traçamos dois raios r e r’ paralelos e com o mesmo sentido. Qual é o lugar geométrico dos pontos médios M dos segmentos AA’ quando A e A’ se deslocam sobre as circunferências?
  6. Qual é o lugar geométricos dos pontos médios das cordas de uma circunferência que têm um comprimento dado l?

Circunferência e recta; distância e direcção

Na construção dinâmica, considere a circunferência c e a recta s.
Determine os pontos M da circunferência c e N da recta s tais que a distância entre eles seja igual à dada (MN) e segundo a direcção de r.




2014
EUCLIDES
Instrumentos e métodos

de resolução de problemas de construção