A não perder:
EDUARDO VELOSO, Uma curva de cada vez..
O caracol de Pascal,
Educação e Matemática, revista da A.P.M, nº 138: 2016
História da Matemática, Curvas, Ferramentas, Tecnologia: para estudar e construir.

3.8.10

Uma mediana no triângulo rectângulo

Tome-se um triângulo rectângulo em A e a mediana de A para o ponto médio de BC. A mediana divide o triângulo rectângulo (como qualquer outra em qualquer triângulo) em dois triângulos equivalentes (Porquê?). Mas neste caso, a mediana divide em dois triângulos isósceles. O exercício para os 7º e 8º anos de escolaridade é demonstrar isso mesmo. Com o que se aprende no 9º ano, já passa a ser outra coisa.



2.8.10

Demonstração simples

A partir do triângulo equilátero ABC, construímos o triângulos A'B'C' para fora (e o triângulo A''B''C'' para dentro) nas condições da figura em que AA'=BB'=CC'.
Pedimos que se demonstre que A'B'C' é equilátero.




É uma demonstração simples e boa para os alunos do ensino básico aprenderem a separar hipótese de tese e a escrever os passos sucessivos da demonstração que não precisa de mais do que critérios de congruência de triângulos (estudados no 7º ano)

1.8.10

Determinar um triângulo conhecidos A e comprimentos b, c, ma

Voltamos, durante algum tempo, a exercícios básicos (pelo menos na aparência) e que podem ser apresentados a alunos do ensino básico.

O primeiro exercício que apresentamos é interactivo e pede que determinemos, a partir de A e da recta r=AB, os restantes elementos de um triângulo ABC de que sabemos os comprimentos dos lados c=AB=5, b=AC=4 e da mediana ma=AM=3.




O Arsélio não promete dar a solução antes de Setembro. Talvez possa dar sugestões. Ou responder a dúvidas que lhe ponham.

31.7.10

Determinar os focos de uma elipse definida por 5 dos seus pontos

Uma elipse está definida por cinco pontos: A, B, C, D, E. Determinar os focos F1 e F2



António Aurélio promete a resolução para Setembro.

29.7.10

Cónica de Evans

Dado um triângulo ABC, determinemos:
- os pontos de napoleão Np1 e Np2
- os pontos de Fermat Fm1 e Fm2
- os pontos isodinâmicos W1 e W2

Num triângulo nem sempre existem todos os pontos FF, Np, WW; mas quando existem, estão os seis sobre a mesma cónica - cónica de Evans.

http://geometrias.blogspot.com/2008/09/pontos-isog-pontos-isodin.html (9/9/08)

http://geometrias.blogspot.com/2008/09/pontos-isodin-e-de-napole.html (26/9/08)

http://geometrias.blogspot.com/2008/07/napole-e-fermat.html (02/07/2008)

http://geometrias.blogspot.com/2009/01/pontos-de-fermat-pontos-isodinamicos-e.html(29/01/2009)


Colocamos dois casos, um em que a cónica de Evans é hipérbole e outro em que é elipse, por ser difícil aparecer a elipse quando deslocamos um dos vértices do triângulo. Nem sempre são visíveis no rectângulo de visualização todos os 6 pontos.






Cinco destes pontos seis pontos definem sempre uma cónica. Evans demonstrou que esta cónica contém o sexto ponto.

22.7.10

Hipérboles hipercores

Sugestão de beleza da entrada anterior. Só pela beleza mesmo.

Hipérbole de Kiepert

Tome-se um triângulo ABC, o seu circuncentro O e o seu ortocentro H.Estes cinco pontos definem uma cónica, no caso, a hipérbole de Kiepert, segundo Paul Yiu.




Para que triângulos é que estes cinco pontos definem duas rectas?

21.7.10

Circunferências e Tangentes

Dadas duas circunferências quaisquer de centros A e B. A recta AB intersecta as circunferência em quatro pontos. Tomemos os dois A' e B', mais distanciados. Tirem-se por A' tangentes à circunferência de centro B e por B' tangentes à circunferência de centro A.
As circunferências inscritas nos triângulos curvilíneos são congruentes.





(Paul Yiu, claro!)

13.7.10

A partir de um triângulo, outros. E outras qualidades.

Nestes tempos, dedicamo-nos a olhar para o texto Introdução à Geometria do Triângulo, de Paul Yiu e, sempre que possível mostrar construções dinâmicas que ilustrem resultados que nos pedem divulgação. Um enunciado simples:

Tome-se um triângulo ABC e um ponto P qualquer. Depois tirem-se por P perpendiculares a PA,PB e PC. Estas perpendiculares intersectam as rectas BC, AC e AB em A', B' e C', respectivamente.
  1. A', B' e C' são colineares
  2. E são colineares os centros das circunferências de nove pontos dos triângulos rectângulos PAA', PBB' e PCC'
  3. Essas circunferências têm obviamente um ponto comum - P que é o pé de alturas de todos os triângulos rectângulos. Menos esperado é haver um outro ponto P* comum às três circunferências.




É sempre um espanto. Coisa pouca, uma nota de uma viagem de estudo ao mundo dos triângulos.

7.7.10

Circuncentro sobre circunferência inscrita e baricentro

A Mariana voltou aos triângulos cujo circuncentro está sobre a circunferência inscrita. Como se podia ver na penúltima entrada, o lugar geométrico dos ortocentros desses triângulos é uma circunferência de centro sobre OI, tangente à circunscrita e de raio R-2r.
A animação seguinte sugere que o lugar geométrico dos baricentros desses triângulos é uma circunferência de que não sabemos o centro (parece que sobre OI também) nem o raio.



Quem sabe?

6.7.10

Circunferência dos 9 pontos como lugar geométrico

Do trabalho de Paul Yu, citado na entrada anterior, retivemos ainda uma outra pergunta:

Quando um ponto P percorre a circunferência circunscrita de um triângulo ABC de ortocentro H, onde está o ponto médio de PH?



A resposta é: quando P percorre a circunferência circunscrita, M percorre a circunferência de 9 pontos (dito, de outro modo, a circunferência de 9 pontos é o lugar geométrico dos pontos médios de PH).
Porquê?

Etiquetas: ,

4.7.10

Triângulos com circuncentro na circunferência inscrita?

Uma das perguntas de Paul Yu, em "Introduction to the Geometryof the Triangle" (Florida Atlantic University: 2001) que fizémos a nós mesmos (AAF, AM & MIS), numa destas quintas geométricas era qualquer coisa como: Quais são os triângulos que têm o circuncentro na circunferência inscrita?. Na altura, respondemos com os cálculos mais óbvios, uma construção (em geogebra) e os espantos do costume. E deixámos para mais tarde essa e mais duas outras respostas (as construções já foram feitas ou meio desfeitas-AF (ou meias-desfeitas?:-))
Hoje, passados uns dias, recebemos de manhã o estudo de MS (construções em CaRmetal*.zir) que não resistimos a publicar como prenda de domingo. Muito cuidadosamente, ela escreve muito mais que uma resposta à pergunta. Assim:
  1. Porisma - difícil de definir- mas que contem de certa forma o conceito de corolário
  2. Porisma - de uma maneira simples mas perceptível - é uma situação que ou não tem soluções ou tem uma infinidade de soluções
  3. Porisma de Poncelet - Sejam dois círculos C1 e C2, C2 interior a C1. Por um ponto P de C1 tire-se uma tangente a C2 que intersecta C1 noutro ponto a partir do qual se tira nova tangente a C1 e assim sucessivamente. Forma-se assim uma linha poligonal.

    Se essa linha poligonal fechar, fechará (com a mesma dimensão) qualquer que seja o ponto P de partida de C1. Se não fechar, não fechará para nenhum ponto de C1
  4. Polígonos que se formam nestas condições chamam -se polígonos bicentricos(têm incentro e circuncentro)
  5. Todo o triângulo é bicentrico
  6. Voltemos ao porisma de Poncelet para o caso em que a linha poligonal fecha e tem dimensão 3 - triângulos. Existe assim uma infinidade de triângulos com o mesmo circuncentro e incentro e que se chamam triângulos poristicos - Entrada no blogue em 7.05.09 (ex. interactivo)
  7. Que condições se têm que verificar para haver uma infinidade de soluções - a relação de Euler - OI2= R(R-2r) ou OI é a média geométrica entre R e R-2r
  8. Caso o circuncentro (O) esteja sobre o incírculo:
    1. R=r(1+√t2)
    2. O lugar geométrico dos ortocentros (H) dos triângulos poristas (nesta condição) é uma circumferência com centro sobre OI , tangente ao circuncírculo e de raio R-2r

2014
EUCLIDES
Instrumentos e métodos

de resolução de problemas de construção