A não perder:
EDUARDO VELOSO, Uma curva de cada vez..
O caracol de Pascal,
Educação e Matemática, revista da A.P.M, nº 138: 2016
História da Matemática, Curvas, Ferramentas, Tecnologia: para estudar e construir.

15.9.09

As alturas de um triângulo são mediatrizes de outro e ...

Teorema: As alturas de um triângulo são concorrentes.













Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)



A demonstração de um determinado resultado é usada para outras demonstrações. Por exemplo, para demonstrar que as três alturas de um triângulo são concorrentes, basta verificar que elas são mediatrizes de outro (e já sabemos que as mediatrizes de um triângulo qualquer são concorrentes. No ensino básico, é muito importante que os jovens usem intencionalmente como parte de argumentos demonstrativos, demonstrações já feitas.


Demonstração: Por cada um dos vértices do triângulo ABC façamos passar paralela ao lado que se lhe opõe; por A passamos uma paralea a BC, etc. Ficamos assim com o triângulo DEF e as rectas que contêm as alturas de ABC são as mediatrizes dos lados de DEF. Para exemplo, vejamos que a altura relativa ao vértice C é a mediatriz de DE. Como sabemos (desde a igualdade de triângulos), os lados opostos do paralelogramo ABDC são iguais, sendo AB=CD. E do mesmo modo acontece com o paralelogramo ABCE, sendo AB=CE. CE e CD são ambos iguais a um terceiro AB e logo CD=CE, ou seja C é o ponto médio de DE. E a altura CHc é perpendicular a AB e a todas as suas paralelas.CHc é perpendicular a DE no seu ponto médio -C- é a mediatriz de DE. ...

14.9.09

Três bissectrizes concorrentes

Teorema: As três bissectrizes de um triângulo ABC são concorrentes.













Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)


Demonstração: Tomemos duas quaisquer das bissectrizes, por exemplo, as bissectizes dos ângulos A e B (como na ilustração acima) que são concorrentes num ponto, que designámos por I. Ora, se I é equidistante de AB e de AC por estar na bissectriz de A, e equidistante de AB e BC por ser bissectriz de B. Assim é equidistante de AC e BC e por isso I tem de estar sobre a bissectriz de C que é o lugar onde estão todos os pontos equidistantes dos lados do ângulo C

Na figura pode "confirmar" as afirmações do teorema, quer construindo a bissectriz de C para ver que ela passa por I, quer construindo o circulo de centro em I e tangente a BC e ver que ele é tangente ao lado AB.

10.9.09

Bissectriz: definição, teoremas; lugar geométrico

Quando escrevemos ângulo BÂC, temos duas semirectas uma a partir de A para B e outra de A para C (a AB e AC chamamos lados e a A chamamos vértice do ângulo BÂC). Chamamos bissectriz do ângulo BÂC ao seu eixo de simetria (AD no caso das ilustrações desta entrada) ou a uma recta que divide o ângulo BÂC em dois ângulos congruentes ou geometricamente iguais, DÂB=DÂC.













Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)




Tal como aconteceu para a mediatriz, podemos verificar que a bissectriz de um ângulo é o lugar geométrico (de todos) os pontos equidistantes dos seus lados. Para isso, temos de ter presente que chamamos distância de um ponto P a uma recta r ao comprimento do segmento da perpendicular a r tirada por P, de extremos P e o pé da perpendicular em r (projecção ortogonal de P sobre r) e demonstrar que os pontos da bissectriz estão a igual distância dos dois lados e que se um ponto qualquer está a igual distância dos lados, então está sobre a bissectriz.


Teorema directo: Se D é um ponto da bissectriz de BÂC, então a distância de D a AB é igual à distância de D a AC.














Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)


Demonstração: Se D é um ponto da bissectriz, DÂB=DÂC. Se E é uma projecção ortogonal de D sobre AB e F é a projecção ortogonal de D sobre AC, são iguais os ângulos DÊA e DFA (DEA=DFA=1 recto). Assim, os triângulos ADE e ADF são congruentes por terem os ângulos iguais, cada um a cada um, e terem um lado comum AD. Como em triângulos iguais a ângulos iguais se opõem a ângulos iguais, DE=DF por serem opostos aos ângulos que resultaram da bissecção de BÂC



Teorema recíproco: Se a distância de P a AB é igual à distância de P a AC, então P está sobre a bissectriz de BÂC.














Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)


Demonstração: Precisamos de provar que se P tem a qualidade de ser equidistante de AB e AC, então PÂB=PAC. Tomemos as projecções ortogonais de P sobre AB e AC, respectivamente R e S, e consideremos os triângulos rectãngulos (em R e em S) APR e APS que têm AP como hipotenusa comum e um cateto de um igual ao cateto do outro PR=PS. Os ângulos que se opõem a estes catetos iguais, são iguais. Ou seja, PAR=PAS.





Esta entrada lembra-nos que, ainda sem conhecer o Teorema de Pitágoras, pode ser simples (e útil ao desenvolvimento do raciocíno dedutivo) fazer, a partir dos critérios de congruência de triângulos em geral, a demonstração de critérios particulares para a congruência de triângulos rectângulos.
De facto, se colarmos por um cateto comum PR (no caso da ilustração dinâmica), quaisquer dois triângulos rectângulos com a mesma hipotenusa, obtemos 3 pontos colineares (A, R e Q) e o triângulo isósceles APQ de que PR é a altura e o eixo de simetria que divide o triângulo APQ em dois triângulos iguais.
 











Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)




A ilustração dinâmica, que se segue, serve para ver (não para demonstrar) que os pontos que não estão na bissectriz não são equidistantes dos lados do ângulo (Teorema contrário).













Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)

7.9.09

Um ponto comum às mediatrizes de um triângulo

Teorema: As mediatrizes Δa, Δb e Δc dos três lados a, b, c de um triângulo ABC são concorrentes num ponto.














Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)

A construção dinâmica não faz demonstração, mas é uma boa verificação, quer pela construção da terceira mediatriz a passar pelo ponto de intersecção das outras duas, quer pela construção da circunferência circunscrita ao triângulo




Demonstração: Tomemos, por exemplo, as mediatrizes dos lados a e b. Claro que estas são concorrentes (para serem paralelas, teriam de ser perpendiculares a lados paralelos e num triângulo não há lados paralelos). Chamemos O ao ponto de intersecção das mediatrizes Δa e Δb. Como O está na mediatriz de BC, OB=OC. Por O estar na mediatriz de AC, OA=OC. Em conclusão, OA=OB(=OC) e, por isso, O está na mediatriz de AB que é onde estão todos os pontos equidistantes de A e B.

Parece-nos um bom teorema para demonstrar no básico.

6.9.09

Mediatriz: definições, teoremas e lugares geométricos

25.8.09

Uma viagem do circuncentro

Considere ainda o triângulo ABC, em que C é um ponto livre sobre uma recta. Pode observar o rasto do circuncentro quando o vértice C percorre a recta.





Pode fazer variar a recta, deslocando R.
E pode mudar mesmo os pontos A e B, claro!
Que conclui?

24.8.09

As viagens do incentro

E a viagem do incentro dos triângulos ABC, enquanto C percorre uma recta?
Que acontece quando faz variar a recta r (usando R)?



A viagem do ortocentro

Po onde andará o ortocentro de um triângulo ABC enquanto C viaja sobre uma recta?





Pode deslocar C sobre r para ver H descrever o seu lugar geométrico. Pode deslocar o ponto R para mudar a recta em que C se desloca.

22.8.09

A viagem especial do baricentro

A última entrada propunha olhar para o lugar geométrico dos pontos notáveis dos triângulos ABC em que A e B são extremos de um arco de circunferência (pontos sobre uma circunferência) e C percorre o arco AB.

Essa entrada lembrou-nos a forma redutora como, por razões utilitaristas e de circunstância, apresentamos aos estudantes alguns lugares geométricos. No básico, e depois no secundário em problemas analíticos, centramo-nos muito no lugar geométrico do baricentro quando um vértice percorre uma recta paralela ao seu lado oposto.

Será que perdemos alguma coisa por não considerarmos uma recta qualquer?





O que é que acontece se a recta r em que se desloca B não for paralela a AC? Pode modificar as posições de r relativas a AC, deslocando R. Pode mudar tudo.
Se deslocar B sobre a recta r obterá o rasto de G no seu lugar geométrico.

Não é melhor manter o caso mais geral? Ou abri-lo sempre para grupos de alunos, tanto em termos básicos como em termos de geometria analítica?

21.8.09

Arcos

Na anterior entrada, propusemos um olhar sobre o lugar geométrico de pontos P obtidos por secantes a uma circunferência perpendiculares - AP e BP - determinando uma delas por um ponto M, livre na circunferência. Podem apresentar-se aos estudantes outros casos interessantes. Por exemplo, determinar o lugar geométrico dos pontos P sobre uma recta AM e tal que MP=BM, em que A é o extremo do arco e M livre sobre o arco AB da circunferência.



Nesta entrada, propomos que se tome um ponto C sobre o arco AB. Qual será o lugar geométrico de cada um dos pontos notáveis do triângulo ABC, quando C percorre AB?





Defina cada um dos lugares geométricos e explique-os, se possível. A e B, deslocando-se, permitem definir novos arcos. Deslocando C sobre o arco AB, pode obter o rasto dos pontos notáveis do triângulo.

Para os estudantes do ensino secundário, ganha interesse especial a escolha de referenciais seguida da determinação das equações dos lugares geométricos.

19.8.09

Arcos

Tomámos um arco de circunferência AB e um ponto M livre em AB. Chamamos P às projecções ortogonais de B sobre AM. Qual será o lugar geométrico dos pontos P quando M percorre AB ?






Pode deslocar M sobre AB e A ou B para mudar de arco...
Haverá algum caso em que P descreve o próprio AB?

16.8.09

Olhar um ponto fixo

Tomámos um triângulo ABC, rectângulo em B. Por B passamos a recta r, sobre a qual projectamos ortogonalmente A e C, obtendo M e N. A animação que se segue permite ver que, quando r varre o triângulo, as circunferências de diâmetro MN têm um ponto fixo e permite ver que são envolvidas por uma curva cordial.





Qual será o lugar geométrico dos centros das circunferências de diâmetro MN, quando as rectas r que passam por B varrem o plano?

2014
EUCLIDES
Instrumentos e métodos

de resolução de problemas de construção